2,163
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 750-756 | Received 13 Dec 2017, Accepted 26 Feb 2018, Published online: 08 Mar 2018

References

  • Aiken A, Khokha R. (2010). Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. Biochim Biophys Acta 1803:121–32.
  • Barksby HE, Milner JM, Patterson AM, et al. (2006). Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum 54:3244–53.
  • Bischoff DS, Zhu JH, Makhijani NS, et al. (2015). Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling. World J Stem Cells 7:1262–73.
  • Bobadilla M, Sáinz N, Rodríguez JA, et al. (2014). MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 32:447–61.
  • Bord S, Horner A, Hembry RM, et al. (1998). Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone: potential roles in skeletal development. Bone 23:7–12.
  • Chen G, Deng C, Li Y. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–88.
  • Cheng SL, Shao JS, Charlton-Kachigian N, et al. (2003). MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278:45969–77.
  • Coll B, Rodríguez JA, Craver L, et al. (2010). Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease. Kidney Int 78:1275–80.
  • Colnot C, Thompson Z, Miclau T, et al. (2003). Altered fracture repair in the absence of MMP9. Development 130:4123–33.
  • De la Riva B, Sánchez E, Hernández A, et al. (2010). Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration. J Control Release 143:45–52.
  • De la Riva B, Nowak C, Sánchez E, et al. (2009). VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. Eur J Pharm Biopharm 73:50–8.
  • Del Rosario C, Rodríguez-Évora M, Reyes R, et al. (2015a). Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels. Int J Pharm 495:463–73.
  • Del Rosario C, Rodríguez-Évora M, Reyes R, et al. (2015b). BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β-TCP scaffold for critical-size bone defect repair in rats. Biomed Mater 10:045008.
  • Delgado JJ, Évora C, Sánchez E, et al. (2006). Validation of a method for non-invasive in vivo measurement of growth factor release from a local delivery system in bone. J Control Release 114:223–9.
  • Devescovi V, Leonardi E, Ciapetti G, et al. (2008). Growth factors in bone repair. Chir Organi Mov 92:161–8.
  • Dimitriou R, Jones E, McGonagle D, et al. (2011). Bone regeneration: current concepts and future directions. BMC Med 9:66.
  • Dimitriou R, Tsiridis E, Giannoudis PV. (2005). Current concepts of molecular aspects of bone healing. Injury 36:1392–404.
  • Fraker PJ, Speck JC. Jr. (1978). Protein and cell membraneiodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun 80:849–57.
  • García-Irigoyen O, Carotti S, Latasa MU, et al. (2014). Matrix metalloproteinase-10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver Int 34:e257–70.
  • Gill SE, Parks WC. (2008). Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–47.
  • Gómez-Rodríguez V, Orbe J, Martinez-Aguilar E, et al. (2015). Functional MMP-10 is required for efficient tissue repair after experimental hind limb ischemia. FASEB J 29:960–72.
  • Higashino K, Viggeswarapu M, Bargouti M, et al. (2011). Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation. Tissue Eng Part A 17:523–30.
  • Kolambkar YM, Boerckel JD, Dupont KM, et al. (2011). Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone 49:485–92.
  • Kosaki N, Takaishi H, Kamekura S, et al. (2007). Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem Biophys Res Commun 354:846–51.
  • Lee K, Silva EA, Mooney DJ. (2011). Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–70.
  • Li X, Yang HY, Giachelli CM. (2008). BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199:271–7.
  • Lieu S, Hansen E, Dedini R, et al. (2011). Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2. Dis Model Mech 4:203–11.
  • Mao L, Yano M, Kawao N, et al. (2013). Role of matrix metalloproteinase-10 in the BMP-2 inducing osteoblastic differentiation. J Endocrinol 60:1309–19.
  • Martínez-Aguilar E, Gómez-Rodríguez V, Orbe J, et al. (2015). Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J Vasc Surg 61:428–35.
  • Montero I, Orbe J, Varo N, et al. (2006). C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: implications for clinical and subclinical atherosclerosis. J Am Coll Cardiol 47:1369–78.
  • Orbe J, Barrenetxe J, Rodriguez JA, et al. (2011). Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor-mediated mechanism. Circulation 124:2909–19.
  • Orbe J, Rodríguez JA, Calvayrac O, et al. (2009). Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation. Arterioscler Thromb Vasc Biol 29:2109–16.
  • Ortega N, Behonick DJ, Werb Z. (2004). Matrix remodeling during endochondral ossification. Trends Cell Biol 14:86–93.
  • Rodriguez JA, Orbe J, Martinez de Lizarrondo S, et al. (2008). Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli. Front Biosci 13:2916–21.
  • Rodríguez-Évora M, Delgado A, Reyes R, et al. (2013). Osteogenic effect of local, long versus short term BMP-2 delivery from a novel SPU–PLGA–βTCP concentric system in a critical size defect in rats. Eur J Pharm Sci 49:873–84.
  • Rodríguez-Évora M, Reyes R, Alvarez-Lorenzo C, et al. (2014). Bone regeneration induced by an in situ gel-forming poloxamine, bone morphogenetic protein-2 system. J Biomed Nanotechnol 10:959–69.
  • Rosen V. (2009). BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475–80.
  • Shi WZ, Ju JY, Xiao HJ, et al. (2017). Dynamics of MMP-9, MMP-2 and TIMP-1 in a rat model of brain injury combined with traumatic heterotopic ossification. Mol Med Rep 15:2129–35.
  • Song B, Estrada KD, Lyons KM. (2009). Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 20:379–88.
  • Stickens D, Behonick DJ, Ortega N, et al. (2004). Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–95.
  • Sun H, Wang J, Deng F, et al. (2016). Co-delivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats. Mol Med Rep 14:737–45.
  • Yuasa M, Mignemi NA, Nyman JS, et al. (2015). Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification. J Clin Invest 125:3117–31.