2,576
Views
15
CrossRef citations to date
0
Altmetric
Review Article

The paradigm shift for drug delivery systems for oral and maxillofacial implants

ORCID Icon
Pages 1504-1515 | Received 08 Jan 2018, Accepted 14 May 2018, Published online: 03 Jul 2018

References

  • Alencastre IS, Sousa DM, Alves CJ, et al. (2016). Delivery of pharmaceutics to bone: Nanotechnologies, high-throughput processing and in silico mathematical models. Eur Cells Mater 31:355–81. doi: 10.22203/eCM.v031a23.
  • Arciola CR, Campoccia D, Ehrlich GD, et al. (2015). Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol 830:29–46. doi: 10.1007/978-3-319-11038-7_2.
  • Bazaka K, Jacob MV, Chrzanowski W, et al. (2015). Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv 5:48739–59.
  • Bose S, Robertson SF, Bandyopadhyay A. (2018). Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 66:6–22.
  • Campoccia D, Montanaro L, Arciola CR. (2013). A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34:8018–29.
  • Camps-Font O, Figueiredo R, Valmaseda-Castellón E, et al. (2015). Postoperative infections after dental implant placement. Implant Dent 24:1.
  • Chen J, Ahmad R, Li W, et al. (2015). Biomechanics of oral mucosa. J R Soc Interface 12:20150325.
  • Chinna Reddy P, Chaitanya KSC, Madhusudan Rao Y. (2011). A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. DARU 19:385–403. http://www.ncbi.nlm.nih.gov/pubmed/23008684. Accessed November 1, 2017.
  • Costalonga M, Herzberg MC. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 162:22–38.
  • Costello CM, Yeung CL, Rawson FJ, et al. (2012). Application of nanotechnology to control bacterial adhesion and patterning on material surfaces. J Exp Nanosci 7:634–51.
  • Crommelin DJA, Florence AT. (2013). Towards more effective advanced drug delivery systems1. Int J Pharm 454:496–511.
  • Dukhin SS, Labib ME. (2012). Theory of effective drug release from medical implants based on the Higuchi model and physico-chemical hydrodynamics. Colloids Surf A Physicochem Eng Asp 409:10–20.
  • Elter C, Heuer W, Demling A, et al. (2016). Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23:327–34. http://www.ncbi.nlm.nih.gov/pubmed/18548931.
  • Feng G, Cheng Y, Wang S-Y, et al. (2015). Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes 1:15022.
  • Ferreira N, Marais LC. (2012). Prevention and management of external fixator pin track sepsis. Strat Traum Limb Recon 7:67–72.
  • Fu Y, Kao WJ. (2010). Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–44.
  • Gadenne V, Lebrun L, Jouenne T, et al. (2013). Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B Biointerfaces 112:229–36.
  • Gallo J, Holinka M, Moucha CS. (2014). Antibacterial surface treatment for orthopaedic implants. IJMS 15:13849.
  • Gao P, Nie X, Zou M, et al. (2011). Recent advances in materials for extended-release antibiotic delivery system. J Antibiot 64:625–34.
  • Garg T, Goyal AK. (2014). Biomaterial-based scaffolds – current status and future directions. Expert Opin Drug Deliv 11:767–89.
  • Giannakou C, Park M, de Jong W, et al. (2016). A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomed 11:2935.
  • Gimeno M, Pinczowski P, Pérez M, et al. (2015). A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm 96:264–71.
  • Goodman SB, Yao Z, Keeney M, et al. (2013). The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–83. doi: 10.1016/j.biomaterials.2013.01.074.
  • Graham M, Cady N. (2014). Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings 4:37–59.
  • Gulati K, Aw MS, Findlay D, et al. (2012). Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 3:857–73.
  • Heller J. (1987). Controlled drug release from monolithic systems. In: Saettone MF, Bucci M, Speiser P, ed. Ophthalmic drug delivery. New York, NY: Springer, 179–89.
  • Holpuch AS, Hummel GJ, Tong M, et al. (2010). Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies. Pharm Res 27:1224–36.
  • Horváth A, Stavropoulos A, Windisch P, et al. (2013). Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin Oral Invest 17:423–30.
  • Hsiao S-W, Venault A, Yang H-S, et al. (2014). Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer – concomitant effects of surface topography and surface chemistry on attachment of live bacteria. Colloids Surf B Biointer 118:254–60.
  • Huang X, Brazel CS. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Rel 73:121–36.
  • Jin YJ, Kang S, Park P, et al. (2017). Anti-inflammatory and antibacterial effects of covalently attached biomembrane-mimic polymer grafts on gore-tex implants. ACS Appl Mater Interfaces 9:19161–75.
  • Joshi D, Garg T, Goyal AK, et al. (2016). Advanced drug delivery approaches against periodontitis. Drug Deliv 23:363–77.
  • Kazmers NH, Fragomen AT, Rozbruch SR. (2016). Prevention of pin site infection in external fixation: a review of the literature. Strat Traum Limb Recon 11:75–85.
  • Koc Y, De Mello AJ, Mchale G, et al. (2008). Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab Chip 8:582. http://irep.ntu.ac.uk/id/eprint/19853/1/192487_6095ShirtcliffePostprint.pdf. Accessed February 26.
  • Krachler AM, Orth K. (2013). Targeting the bacteria-host interface: strategies in anti-adhesion therapy. Virulence 4:284–94.
  • Laffleur F, Bernkop-Schnürch A. (2013). Strategies for improving mucosal drug delivery. Nanomedicine 8:2061–75.
  • Laureti L, Matic I, Gutierrez A. (2013). Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics. Antibiotics 2:100–14.
  • Lindert S, Breitkreutz J. (2017). Oromucosal multilayer films for tailor-made, controlled drug delivery. Expert Opin Drug Deliv 14:1–15.
  • López E, Blázquez J. (2009). Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli. Antimicrob Agents Chemother 53:3411–15.
  • Lyndon JA, Boyd BJ, Birbilis N. (2014). Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Rel 179:63–75.
  • Maher S, Kaur G, Lima-Marques L, et al. (2017). Engineering of micro- to nanostructured 3d-printed drug-releasing titanium implants for enhanced osseointegration and localized delivery of anticancer drugs. ACS Appl Mater Interfaces 9:29562–70.
  • Maruyama N, Maruyama F, Takeuchi Y, et al. (2015). Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep 4:6602.
  • Moioli EK, Clark PA, Xin X, et al. (2007). Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59:308–24.
  • Mokhtarzadeh H, Aw MS, Khalid KA, et al. (2017). Computational and experimental model of nano- engineered drug delivery system for trabecular bone. Proceedings of 11th World Congress on Computational Mechanics, (WCCM XI), International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, pp. 868–879. https://doi.org/https://eprints.qut.edu.au/106499/1/106499.pdf
  • Møller AM, Villebro N, Pedersen T, et al. (2002). Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet 359:114–17.
  • Nicholson C. (1995). Interaction between diffusion and Michaelis-Menten uptake of dopamine after lontophoresis in striatum. Biophys J 68:1699–715.
  • Ohri R, Wang JC, Blaskovich PD, et al. (2013). Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision. Anesth Amp 117:717–30.
  • Ouyang L, Sun Z, Wang D, et al. (2018). Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids Surf B Biointerfaces 163:175–83.
  • Palo M, Holländer J, Suominen J, et al. (2017). 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices 14:685–96.
  • Park K. (2014). Controlled drug delivery systems: past forward and future back. J Control Rel 190:3–8.
  • Parra C, Dorta F, Jimenez E, et al. (2015). A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material. J Nanobiotechnol 13.
  • Pechook S, Sudakov K, Polishchuk I, et al. (2015). Bioinspired passive anti-biofouling surfaces preventing biofilm formation. J Mater Chem B 3:1371–8.
  • Pogodin S, Hasan J, Baulin VA, et al. (2013). Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104:835–40.
  • Priya James H, John R, Alex A, et al. (2014). Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B 4:120–7.
  • Ramasamy M, Lee J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016:1851242.
  • Rams TE. (2017). Antibiotic resistance in human periodontitis and peri-implant microbiota. J Clin Pharmacol 30(10):871–89.
  • Ranade VV. (1990). Drug delivery systems. 4. Implants in drug delivery. J Clin Pharmacol 30:871–89. http://www.ncbi.nlm.nih.gov/pubmed/2229447. Accessed November 20, 2017.
  • Rivardo F, Turner RJ, Allegrone G, et al. (2009). Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–53.
  • Romagnoli C, D’Asta F, Brandi ML. (2013). Drug delivery using composite scaffolds in the context of bone tissue engineering. Clin Cases Miner Bone Metab 10:155–61. http://www.ncbi.nlm.nih.gov/pubmed/24554923. Accessed April 29, 2018.
  • Romanò CL, Scarponi S, Gallazzi E, et al. (2015). Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157.
  • Santamaria CM, Woodruff A, Yang R, et al. (2017). Drug delivery systems for prolonged duration local anesthesia. Mater Today 20:22–31.
  • Scardino AJ, Zhang H, Cookson DJ, et al. (2009). The role of nano-roughness in antifouling. Biofouling 25:757–67.
  • Schricker SR, Palacio MLB, Bhushan B, et al. (2012). Designing nanostructured block copolymer surfaces to control protein adhesion. Philos Trans 370:2348–80.
  • Siepmann J, Siepmann F. (2012). Modeling of diffusion controlled drug delivery. J Control Rel 161:351–62.
  • Slepicka P, Kasalkova NS, Siegel J, et al. (2015). Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv 33:1120–9.
  • Suzuki N, Yoneda M, Hirofuji T. (2013). Mixed red-complex bacterial infection in periodontitis. Int J Dent 2013:587279. doi: 10.1155/2013/587279.
  • Tappa K, Jammalamadaka U. (2018). Novel biomaterials used in medical 3D printing techniques. JFB 9:17.
  • Tomasi C, Tessarolo F, Caola I, et al. (2014). Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Impl Res 25:997–1003.
  • Weiser JR. Saltzman WM. (2014). Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–73. doi: 10.1016/j.jconrel.2014.04.048.
  • Wojnicz D, Jankowski S. (2007). Effects of subinhibitory concentrations of amikacin and ciprofloxacin on the hydrophobicity and adherence to epithelial cells of uropathogenic Escherichia coli strains. Int J Antimicrob Agents 29:700–4.
  • Zhang Y, Su H, Wen L, et al. (2016). Mathematical modeling for local trans-round window membrane drug transport in the inner ear. Drug Deliv 23:3082–7.
  • Zhang J, Wang C, Wang J, et al. (2012). In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite. Drug Deliv 19:264–9.
  • Zhang H, Zhang J, Streisand JB. (2002). Oral mucosal drug delivery. Clin Pharmacokinet Ther Appl 41:661–80.
  • Zhao B, Van Der Mei HC, Subbiahdoss G, et al. (2014). Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater 30:716–27.
  • Zhao Y-N, Xu X, Wen N, et al. (2017). A drug carrier for sustained zero-order release of peptide therapeutics. Sci Rep 7:5524.