11,330
Views
84
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines

ORCID Icon, &
Pages 1319-1327 | Received 20 Mar 2018, Accepted 14 May 2018, Published online: 05 Jun 2018

References

  • Ahmed TA, Aljaeid BM. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design Dev Ther 10:483–507.
  • Almeida JPM, Lin AY, Figueroa ER, et al. (2015). In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11:1453–9.
  • Alsaleh NB, Persaud I, Brown JM. (2016). Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11:e0167366.
  • Banskota S, Yousefpour P, Chilkoti A. (2017). Cell-based biohybrid drug delivery systems: the best of the synthetic and natural worlds. Macromol Biosci 17:1600361.
  • Barati N, Nikpoor AR, Razazan A, et al. (2017). Nanoliposomes carrying HER2/neu-derived peptide AE36 with CpG-ODN exhibit therapeutic and prophylactic activities in a mice TUBO model of breast cancer. Immunol Lett. 190:108–17.
  • Barbara R, Belletti D, Pederzoli F, et al. (2017). Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526:413–24.
  • Bernocchi B, Carpentier R, Lantier I, et al. (2016). Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. J Control Release 232:42–50.
  • Bharali DJ, Pradhan V, Elkin G, et al. (2008). Novel nanoparticles for the delivery of recombinant hepatitis B vaccine. Nanomedicine 4:311–17.
  • Bhargava A, Mishra D, Banerjee S, Mishra PK. (2013). Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. J Drug Target 21:126–36.
  • Bolhassani A, Safaiyan S, Rafati S. (2011). Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3.
  • Burger C, Shahzad Y, Bruemmer A, et al. (2017). Traversing the skin barrier with nano-emulsions. Curr Drug Deliv 14:458–72.
  • Caballero I, Aira LE, Lavastida A, et al. (2017). Safety and immunogenicity of a human epidermal growth factor receptor 1 (HER1)-based vaccine in prostate castration-resistant carcinoma patients: a dose-escalation phase I study trial. Front Pharmacol 8:263.
  • Chiang C-H, Hosseinkhani H, Cheng W-S, et al. (2013). Improving drug loading efficiency and delivery performance of micro- and nanoparticle preparations through optimising formulation variables. Int J Environ Res 10:996–1006.
  • Conniot J, Silva JM, Fernandes JG, et al. (2014). Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105.
  • Damge C, Maincent P, Ubrich N. (2007). Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117:163–70.
  • Darban SA, Badiee A, Jaafari MR. (2017). PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells. Nanomedicine 12:1475–90.
  • Delie F, Allemann E, Cohen M. (2012). Nanocarriers for ovarian cancer active drug targeting. J Drug Deliv Sci Technol 22:421–6.
  • DeLong RK, Akhtar U, Sallee M, et al. (2009). Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials 30:6451–9.
  • Dinda SC, Pattnaik G. (2013). Nanobiotechnology-based drug delivery in brain targeting. Curr Pharm Biotechnol 14:1264–74.
  • Draz MS, Wang Y-J, Chen FF, et al. (2017). Electrically oscillating plasmonic nanoparticles for enhanced DNA vaccination against hepatitis C virus. Adv Funct Mater 27:pii:1604139.
  • Fang RH, Hu C-MJ, Luk BT, et al. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–8.
  • El-Say KM, El-Sawy HS. (2017). Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–91.
  • Friede M, Aguado MT. (2005). Need for new vaccine formulations and potential of particulate antigen and DNA delivery systems. Adv Drug Deliv Rev 57:325–31.
  • Fytianos K, Rodriguez-Lorenzo L, Clift MJD, et al. (2015). Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomed Nanotechnol Biol Med 11:633–44.
  • Gato WE, Hunter DA, Byrd IC, et al. (2017). Assessment of the short-term toxicity of TiO2 nanofiber in Sprague Dawley rats. Environ Toxicol 32:1775–83.
  • Ge W, Li Y, Li Z-S, et al. (2009). The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 58:201–8.
  • Ge W, Sui YF, Wu DC, et al. (2006). MAGE-1/Heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother 55:841–9.
  • Gomes AJ, Lunardi LO, Marchetti JM, et al. (2005). Photobiological and ultrastructural studies of nanoparticles of poly(lactic-co-glycolic acid)-containing bacteriochlorophyll-a as a photosensitizer useful for PDT treatment. Drug Deliv 12:159–64.
  • Gong J, Chen M, Zheng Y, et al. (2012). Polymeric micelles drug delivery system in oncology. J Control Release 159:312–23.
  • Gupta R, Rai B. (2017). Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep 7:45292.
  • Hainfeld JF, Dilmanian FA, Zhong Z, et al. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–59.
  • Hainfeld JF, O’Connor MJ, Lin P, et al. (2014). Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. PLoS One 9:e88414.
  • Hainfeld JF, Slatkin DN, Smilowitz HM. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–15.
  • Hainfeld JF, Smilowitz HM, O’Connor MJ, et al. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8:1601–9.
  • Harms M, Mueller-Goymann CC. (2011). Solid lipid nanoparticles for drug delivery. J Drug Deliv Sci Technol 21:89–99.
  • Hsieh HH, Ho LC, Chang HT. (2016). Aminophenylboronic acid polymer nanoparticles for quantitation of glucose and for insulin release. Anal Bioanal Chem 408:6557–65.
  • Hu Y, Hoerle R, Ehrich M, Zhang C. (2015). Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater 28:149–59.
  • Huo M, Zhao Y, Satterlee AB, et al. (2017). Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release 245:81–94.
  • Jain A, Cheng K. (2017). The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 245:27–40.
  • Jalali SA, Sankian M, Tavakkol-Afshari J, Jaafari MR. (2012). Induction of tumor-specific immunity by multi-epitope rat HER2/neu-derived peptides encapsulated in LPD Nanoparticles. Nanomedicine 8:692–701.
  • Ji Z, Xie Z, Zhang Z, et al. (2017). Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials 128:8–18.
  • Jia F, Liu X, Li L, et al. (2013). Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 172:1020–34.
  • Kim SY, Noh YW, Kang TH, et al. (2017). Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity. Biomaterials 130:56–66.
  • Klippstein R, Pozo D. (2010). Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed Nanotechnol Biol Med 6:523–9.
  • Kogan MJ, Olmedo I, Hosta L, et al. (2007). Peptides and metallic nanoparticles for biomedical applications. Nanomedicine 2:287–306.
  • Kotla NG, Chandrasekar B, Rooney P, et al. (2017). Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. Acs Biomater Sci Eng 3:1262–72.
  • Kreuter J. (2005). Application of nanoparticles for the delivery of drugs to the brain. In: DeBoer AG, editor. Drug transport(ers) and the diseased brain. Elsevier: Amsterdam, 85–94.
  • Kreuter J. (2012). Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 64:213–22.
  • Kroll AV, Fang RH, Zhang L. (2017). Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28:23–32.
  • Labhasetwar V, Song C, Humphrey W, et al. (1998). Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci 87:1229–34.
  • Lai SK, Wang Y-Y, Hanes J. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–71.
  • Le Boeuf F, Selman M, Son HH, et al. (2017). Oncolytic maraba virus MG1 as a treatment for sarcoma. Int J Cancer 141:1257–64.
  • Li C, Liang S, Zhang C, et al. (2015). Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54:177–87.
  • Li H, Li Y, Jiao J, Hu H-M. (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6:645–50.
  • Lin AY, Lunsford J, Bear AS, et al. (2013). High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res Lett 8:72.
  • Liu J, Yang Y, Zhu W, et al. (2016). Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97:1–9.
  • Liu Y, Chen C. (2016). Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 103:76–89.
  • Luo M, Wang H, Wang Z, et al. (2017). A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 12:648+.
  • Luo Z, Wang C, Yi H, et al. (2015). Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38:50–60.
  • Mahapatro A, Singh DK. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol 9:55.
  • Mansourian M, Badiee A, Jalali SA, et al. (2014). Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunol Lett 162(Pt A):87–93.
  • Marquardt C, Fritsch-Decker S, Al-Rawi M, et al. (2017). Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death. Toxicology 379:40–7.
  • Melero I, Berman DM, Angela Aznar M, et al. (2015). Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15:457–72.
  • Miyabe H, Hyodo M, Nakamura T, et al. (2014). A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. J Control Release 184:20–7.
  • Mocan T, Matea C, Tabaran F, et al. (2015). In vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism. J Cancer 6:583–92.
  • Morera Y, Sanchez J, Bequet-Romero M, et al. (2017). Specific humoral and cellular immune responses in cancer patients undergoing chronic immunization with a VEGF-based therapeutic vaccine. Vaccine 35:3582–90.
  • Neamtu I, Rusu AG, Diaconu A, et al. (2017). Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24:539–57.
  • Nicol JR, Dixon D, Coulter JA. (2015). Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine 10:1315–26.
  • Nikpoor AR, Tavakkol-Afshari J, Sadri K, et al. (2017). Improved tumor accumulation and therapeutic efficacy of CTLA-4-blocking antibody using liposome-encapsulated antibody: in vitro and in vivo studies. Nanomed Nanotechnol Biol Med 13:2671–82.
  • Niu Z, Conejos-Sanchez I, Griffin BT, et al. (2016). Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 106:337–54.
  • Noble GT, Stefanick JF, Ashley JD, et al. (2014). Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45.
  • Orunoglu M, Kaffashi A, Pehlivan SB, et al. (2017). Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater Sci Eng C Mater Biol Appl 78:32–8.
  • Popov A, Enlow E, Bourassa J, Chen H. (2016). Mucus-penetrating nanoparticles made with “mucoadhesive” poly(vinyl alcohol). Nanomed Nanotechnol Biol Med 12:1863–71.
  • Prasad S, Cody V, Saucier-Sawyer JK, et al. (2011). Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomed Nanotechnol Biol Med 7:1–10.
  • Pushpalatha R, Selvamuthukumar S, Kilimozhi D. (2017). Nanocarrier mediated combination drug delivery for chemotherapy - a review. J Drug Deliv Sci Technol 39:362–71.
  • Qidwai A, Khan S, Md S, et al. (2016). Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma. Drug Deliv 23:1476–85.
  • Rahimian S, Fransen MF, Kleinovink JW, et al. (2015). Particulate systems based on poly(lactic-co-glycolic)acid (pLGA) for immunotherapy of cancer. Curr Pharm Des 21:4201–16.
  • Sen K, Mandal M. (2013). Second generation liposomal cancer therapeutics: transition from laboratory to clinic. Int J Pharm 448:28–43.
  • Shariat S, Badiee A, Jalali SA, et al. (2014). P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett 355:54–60.
  • Shi Q, Tao Z, Yang H, et al. (2017). PDGFRβ-specific affibody-directed delivery of a photosensitizer, IR700, is efficient for vascular-targeted photodynamic therapy of colorectal cancer. Drug Deliv 24:1818–30.
  • Shimoni O, Postma A, Yan Y, et al. (2012). Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. ACS Nano 6:1463–72.
  • Siefert AL, Ehrlich A, Corral MJ, et al. (2016). Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model. Biomaterials 108:168–76.
  • Singh A, Peppas NA. (2014). Hydrogels and scaffolds for immunomodulation. Adv Mater Weinheim 26:6530–41.
  • Sun B, Xia T. (2016). Nanomaterial-based vaccine adjuvants. J Mater Chem B 4:5496–509.
  • Toyoda M, Hama S, Ikeda Y, et al. (2015). Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int J Pharm 483:110–14.
  • Ulbrich K, Hola K, Subr V, et al. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–431.
  • Valente F, Astolfi L, Simoni E, et al. (2017). Nanoparticle drug delivery systems for inner ear therapy: an overview. J Drug Deliv Sci Technol 39:28–35.
  • Vangasseri DP, Cui Z, Chen W, et al. (2006). Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 23:385–95.
  • van der Meel R, Fens MHAM Vader P, et al. (2014). Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85.
  • Vonderheide RH, Domchek SM, Clark AS. (2017). Immunotherapy for breast cancer: what are we missing? Clin Cancer Res. 23:2640–6.
  • Wang C, Li P, Liu L, et al. (2016). Self-adjuvanted nanovaccine for cancer immunotherapy: role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79:88–100.
  • Wang X, Yang D, Li S, et al. (2016). Biomineralized vaccine nanohybrid for needle-free intranasal immunization. Biomaterials 106:286–94.
  • Xu Y, Deng L, Ren H, et al. (2017). Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study. Phys Chem Chem Phys 19:17568–76.
  • Yazdani M, Jalali SA, Badiee A, et al. (2017). Stimulation of tumor-specific immunity by p5 HER-2/neu generated peptide encapsulated in nano-liposomes with high phase transition temperature phospholipids. Curr Drug Deliv 14:492–502.
  • Yue H, Wei W, Gu Z, et al. (2015). Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale 7:19949–57.
  • Zeng Q, Li H, Jiang H, et al. (2017). Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 122:105–13.
  • Zhang X. (2015). Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys 72:771–5.
  • Zhong Y, Meng F, Deng C, Zhong Z. (2014). Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 15:1955–69.
  • Zhu Q, Wu SD, Wu SS, et al. (2017). Biodegradable nano-hybrid vehicles for combinatorial and targeted drug delivery for glioma treatment. J Biomater Tissue Eng 7:363–70.
  • Zikry J, Korta DZ, Chapman LW, Linden KG. 2017. Melanoma arising in an ovarian cystic teratoma: a systematic review of presentation, treatment, and outcomes. Arch Gynecol Obstet 296:397–404.