6,066
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Advanced physical techniques for gene delivery based on membrane perforation

, , , , , & show all
Pages 1516-1525 | Received 12 Apr 2018, Accepted 21 May 2018, Published online: 03 Jul 2018

References

  • Abdalkader R, Kawakami S, Unga J, et al. (2017). The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Delivery 24:320–7.
  • Adams CF, Pickard MR, Chari DM. (2013). Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomed: Nanotechnol Biol Med 9:737–41.
  • Akiyama H, Ito A, Kawabe Y, Kamihira M. (2010). Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques. Biomaterials 31:1251–9.
  • Al-Dosari MS, Gao X. (2009). Nonviral gene delivery: principle, limitations, and recent progress. Aaps J 11:671–81.
  • Almstätter I, Mykhaylyk O, Settles M, et al. (2015). Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 5:667–85.
  • Amy D, Domenico C, Yolmari C, et al. (2011). Evaluation of a novel non-penetrating electrode for use in DNA vaccination. PLoS One 6(4):e19181.
  • Antkowiak M, Torres-Mapa ML, Witts EC, et al. (2013). Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation. Sci Rep 3:3281.
  • Arora S, Gupta G, Singh S, Singh N. (2013). Advances in magnetofection – magnetically guided nucleic acid delivery: a review. Jptrm 1:19–29.
  • Badr YA, Kereim MA, Yehia MA, et al. (2005). Production of fertile transgenic wheat plants by laser micropuncture. Photochem Photobiol Sci 4:803.
  • Bai M, Shen M, Teng Y, et al. (2015). Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound. Oncotarget 6:43779–90.
  • Batabyal S, Kim Y, Mohanty S. (2017). Ultrafast laser-assisted spatially targeted optoporation into cortical axons and retinal cells in the eye. J Biomed Optics 22(6):60504.
  • Bergeron E, Boutopoulos C, Martel R, et al. (2015). Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles. Nanoscale 7:17836–47.
  • Bettan M, Ivanov MA, Mir LM, et al. (2000). Efficient DNA electrotransfer into tumors. Bioelectrochemistry 52:83–90.
  • Bora, Utpal. (2014) Gene Transfer Techniques: Physical or Mechanical Methods. http://nptel.ac.in/courses/102103013/module5/lec3/1.html
  • Boudreau EF, Josleyn M, Ullman D, et al. (2012). A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine 30:1951–8.
  • Bugeon S, de Chevigny A, Boutin C, et al. (2017). Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation. Development 144:3968–77.
  • Cai D, Mataraza JM, Qin Z, et al. (2005). Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Meth 2:449–54.
  • Chakravarty P, Qian W, El-Sayed MA, Prausnitz MR. (2010). Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. NATURE Nanotech 5:607–11.
  • Chan, DCF. (1998). Magneto-biolistic methods: US.
  • Chen C, Chen J, Lee W. (2009). Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J Nanosci Nanotech 9:2651–9.
  • Chen W, Cui H, Zhao X, et al. (2015). Characterization and Insights Into the Nano Liposomal Magnetic Gene Vector Used for Cell Co-Transfection. j Nanosci Nanotechnol 15:5530–6.
  • Cho WS, Duffin R, Poland CA, et al. (2012). Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35.
  • Chuah MKL, Collen D, VandenDriessche T. (2003). Biosafety of adenoviral vectors. CGT 3:527.
  • Clark IB, Hanania EG, Stevens J, et al. (2006). Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. J Biomed Opt 11:014034.
  • Das AK, Gupta P, Chakraborty D. (2015). Physical methods of gene transfer: Kinetics of gene delivery into cells: a Review. Agri Rev 36:61.
  • Dasgupta A, Liu M, Ojha T, et al. (2016). Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. Drug Discovery Today: Technologies 20:41–8.
  • Delalande A, Kotopoulis S, Postema M, et al. (2013). Sonoporation: Mechanistic insights and ongoing challenges for gene transfer. Gene 525:191–9.
  • Dhakal K, Black B, Mohanty S. (2015). Introduction of impermeable actin-staining molecules to mammalian cells by optoporation. Sci Rep 4:6553.
  • DiGiusto DL, Krishnan A, Li L, et al. (2010). RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2:36ra43–43r.
  • Dijkink R, Le GS, Nijhuis E, et al. (2008). Controlled cavitation-cell interaction: trans-membrane transport and viability studies. Phys Med Biol 53:375–90.
  • Dimcevski G, Kotopoulis S, Bjanes T, et al. (2016). A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Controlled Release 243:172–81.
  • Donate A, Coppola D, Cruz Y, Heller R. (2011). Evaluation of a novel non-penetrating electrode for use in DNA vaccination. PLoS One 6:e19181.
  • Doukas AG, Flotte TJ. (1996). Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med Biol 22:151–64.
  • El-Aneed A. (2004). An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14.
  • Fan, Q, Hu, W, Ohta, AT. (2013). Light-Induced Microbubble Poration of Localized Cells. In IEEE Engineering in Medicine and Biology Society Conference Proceedings (pp. 4482–4485).
  • Fan Q, Hu W, Ohta AT. (2014). Laser-induced microbubble poration of localized single cells. LAB Chip 14:1572–8.
  • Fan Q, Hu W, Ohta AT. (2015). Efficient single-cell poration by microsecond laser pulses. LAB Chip 15:581–8.
  • Fan Z, Kumon RE, Deng CX. (2014). Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Therapeutic Delivery 5:467–86.
  • Ferraro B, Cruz YL, Coppola D, Heller R. (2009). Intradermal delivery of plasmid vegf165 by electroporation promotes wound healing. Molecul Ther 17:651–7.
  • Frey W, White JA, Price RO, et al. (2006). Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure. Biophys J 90:3608–15.
  • Gehl J. (2003). Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437
  • Gehl J, Sorensen TH, Nielsen K, et al. (1999). In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–40.
  • George S, Xia T, Rallo R, et al. (2011). Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. Acs Nano 5:1805–17.
  • Guo S, Donate A, Basu G, et al. (2011). Electro-gene transfer to skin using a noninvasive multielectrode array. J Control Release 151:256–62.
  • Hao Y, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR. (2014). Non-viral vectors for gene-based therapy. Nature Reviews Genetics 15:541–55.
  • Hashimoto M, Hisano Y. (2011). Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J Neurosci Methods 194:316–20.
  • He H, Kong S, Lee RK, et al. (2008). Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm. Opt Lett 33:2961–3.
  • Heinemann D, Schomaker M, Kalies S, et al. (2013). Gold nanoparticle mediated laser transfection for efficient sirna mediated gene knock down. PLoS One 8:e58604.
  • Heller R, Cruz Y, Heller LC, et al. (2010). Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum Gene Ther 21:357–62.
  • Heller LC, Heller R. (2006). In vivo electroporation for gene therapy. Hum Gene Ther 17:890–7.
  • Heller R, Heller LC. (2015). Gene electrotransfer clinical trials. Adv Genet 89:235
  • Heller R, Jaroszeski M, Atkin A, et al. (1996). In vivo gene electroinjection and expression in rat liver. Febs Lett 389:225–8.
  • Heller L, Jaroszeski MJ, Coppola D, et al. (2000). Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo. Gene Ther 7:826.
  • Heller LC, Jaroszeski MJ, Domenico C, Richard H. (2008). Comparison of electrically mediated and liposome-complexed plasmid DNA delivery to the skin. Genet Vaccines Ther 6:16.
  • Hellman AN, Rau KR, Yoon HH, Venugopalan V. (2008). Biophysical Response to Pulsed Laser microbeam-induced cell lysis and molecular delivery. J Biophotonics 1:24–35.
  • Herrero MJ, Sendra L, Miguel A, Alino SF. (2017). physical methods of gene delivery. In N. Brunetti-Pierri (Ed.), Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders (pp. 113–135): Springer International Publishing.
  • Holmen SL, Vanbrocklin MW, Eversole RR, et al. (1995). Efficient lipid-mediated transfection of DNA into primary rat hepatocytes[J]. In Vitro Cell Dev Biol – Animal 31:347–51.
  • Huang, D, Zhao, D, Li, J, Du, L, Wei, Z, Liang, Z, et al. (2017). A minimally invasive in vivo electroporation method utilizing flexile electrode and microneedle roller. Paper presented at the International Conference on Solid-State Sensors, Actuators and Microsystems.
  • Husseini GA, Pitt WG. (2008). Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–52.
  • Hüttmann, GK, Bever, M, Rahmanzadeh, R, Geerdes, J, Yao, C (2005a). Selective permeabilization of cells by laser irradiated gold nano particles, European conference on biomedical optics. Optical Society of America.
  • Hüttmann G, Yao C, Endl E. (2005). New concepts in laser medicine: Towards a laser surgery with cellular precision. Med Laser Appl 20:135–9.
  • Ibraheem D, Elaissari A, Fessi H. (2014). Gene therapy and DNA delivery systems. Int J Pharm 459:70.
  • Ito H, Morishita R, Iwamoto I, Nagata K. (2014). Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 12(24):1449–57.
  • Jakutavičiūtė M, Ruzgys P, Tamošiūnas M, et al. (2017). Physical methods for drug and gene delivery through the cell plasma membrane. Adv Anat Embryol Cell Biol 227:73–92.
  • Jaroszeski MJ, Gilbert RA, Heller R. (1997). In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta 1334:15–8.
  • Johnson LA, Morgan RA, Dudley ME, et al. (2009). Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–46.
  • Kalams SA, Parker SD, Elizaga M, et al. (2013). Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery. J Infect Dis 208:818–29.
  • Kim TK, Eberwine JH. (2010). Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–8.
  • Kim HJ, Greenleaf JF, Kinnick RR, et al. (1996). Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 7:1339.
  • Koike H, Tomita N, Azuma H, et al. (2005). An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 7:108–16.
  • Kotnik T, Frey W, Sack M, et al. (2015). Electroporation-Based Applications in Biotechnology. Trends Biotechnol 33:480–8.
  • Kotopoulis S, Delalande A, Popa M, et al. (2014). Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 16:53–62.
  • Kotopoulis S, Dimcevski G, Helge Gilja O, et al. (2013). Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study. Med Phys 40:072902.
  • Kurosaki T, Kawakami S, Higuchi Y, et al. (2014). Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. Nanomed-Nanotechnol Biol Med 10:1829–38.
  • Latella MC, Di Salvo MT, Cocchiarella F, et al. (2016). In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Molecular Ther – Nucleic Acids 5:e389.
  • Lei M, Xu H, Yang H, Yao B. (2008). Femtosecond laser-assisted microinjection into living neurons. J Neurosci Methods 174:215–8.
  • Lentacker I, De Cock I, Deckers R, et al. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 72:49–64.
  • Li W, Ma N, Ong LL, et al. (2008). Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med 10:897–909.
  • Liu D, Wang L, Wang Z, Cuschieri A. (2012). Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. Nano Lett 12:5117–21.
  • Liu Y, Yan J, Prausnitz MR. (2012). Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. Ultrasound Med Biol 38:876–88.
  • Lu QL, Liang HD, Partridge T, Blomley M. (2003). Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 10:396–405.
  • Lv H, Zhang S, Wang B, et al. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114:100–9. Society,
  • Mah C, Zolotukhin I, Fraites TJ. (2000). Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 1:S239.
  • Markelc B, Bellard E, Sersa G, et al. (2018). Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J Control Release 276:30–41.
  • Mason TJ. (1988). Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry: Ellis Horwood.
  • Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. (2014). Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J Lab Autom 19:1–18.
  • Megli SH, Kotnik T. (2015). Electroporation-Based Applications in Biotechnology. Trends Biotechnol 33:480–88.
  • Mehier-Humbert S, Guy RH. (2005). Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–53.
  • Mellott AJ, Forrest ML, Detamore MS. (2013). Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 41:446–68.
  • Miao CH, Brayman AA, Loeb KR, et al. (2005). Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 16:893–905.
  • Miklavcic D, Mali B, Kos B, et al. (2014). Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29
  • Miller DL, Song JM. (2003). Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol 29:887–93.
  • Miyazaki JI, Aihara H. (1998). Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867.
  • Moss JA. (2014). Gene therapy review. Radiol Technol 86:155.
  • Newman CM, Bettinger T. (2007). Gene therapy progress and prospects: ultrasound for gene transfer. Gene. Gene Ther 14:465–75.
  • Nishimura K, Fumoto S, Fuchigami Y, et al. (2017). Effective intraperitoneal gene transfection system using nanobubbles and ultrasound irradiation. Drug Deliv 24:737–44.
  • Noack, J, Vogel, A (1995). Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water. SPIE 284–293.
  • Nomikou N, Feichtinger GA, Saha S, et al. (2018). Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation. J Tissue Eng Regen Med 12:e250–60.
  • Paterson L, Agate B, Comrie M, et al. (2005). Photoporation and cell transfection using a violet diode laser. Opt Express 13:595–600.
  • Pereyra AS, Mykhaylyk O, Lockhart EF, et al. (2016). Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells. J Nanomed Nanotechnol 7(2).
  • Pickard MR, Barraud P, Chari DM. (2011). The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 32:2274–84.
  • Plank, C, Scherer, F, Schillinger, U, Anton, M (2000). Magnetofection: Enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J Gene Med 2:24.
  • Plank C, Schillinger U, Scherer F, et al. (2003). The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 384:737–47.
  • Polyakova T, Zablotskii V, Dejneka A. (2017). Cell membrane pore formation and change in ion channel activity in high-gradient magnetic fields. IEEE Magn Lett 8:1–5.
  • Qin Z, Bischof JC. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41:1191–217.
  • Sagi S, Knoll T, Trojan L, et al. (2003). Gene delivery into prostate cancer cells by holmium laser application. Prostate Cancer Prostatic Dis 6:127–30.
  • Sapet C, Laurent N, de Chevigny A, et al. (2011). High transfection efficiency of neural stem cells with magnetofection. Biotechniques 50:187–9.
  • Sapet C, Pellegrino C, Laurent N, et al. (2012). Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm Res 29:1203–18.
  • Schneckenburger H, Hendinger A, Sailer R, et al. (2002). Laser-assisted optoporation of single cells. J Biomed Opt 7:410–6.
  • Schomaker, M, Baumgart, J, Ngezahayo, A, et al. (2009). Plasmonic perforation of living cells using ultrashort laser pulses and gold nanoparticles (pp. 71920U): SPIE.
  • Schwarz D, Kollo M, Bosch C, et al. (2018). Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes. Nat Commun 9.
  • Sengupta A, Kelly SC, Dwivedi N, et al. (2014). Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano 8:2889–99.
  • Shapiro G, Wong AW, Bez M, et al. (2016). Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 223:157–64.
  • Shen ZY, Xia GL, Wu MF, et al. (2016). The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J Cancer Res Clin Oncol 142:373–8.
  • Shi Y, Huang D, Zhou L, et al. (2015). In situ preparation of size-controlled iron oxide nanocrystals using double-hydrophilic multiarm hyperbranched polymers as nanoreactors and their magnetofection In Vitro. Sci Adv Mater 7:219–26.
  • Shirahata Y, Ohkohchi N, Itagak H, Satomi S. (2001). New technique for gene transfection using laser irradiation. J Invest Med 49:184–90.
  • Shi Y, Wu Z, Weng X, et al. (2016). Facile preparation of magnetic nanocrystals using amphiphilic hyperbranched polymers as unimolecular nanoreactors and magnetofectionin vitro. Polym Compos 37:429–34.
  • Skachkov I, Luan Y, van der Steen AFW, et al. (2014). Targeted microbubble mediated sonoporation of endothelial cells in vivo. IEEE Trans Ultrason, Ferroelect, Freq Contr 61:1661–7.
  • Sohrabijam Z, Saeidifar M, Zamanian A. (2017). Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B 152:169–75.
  • Soto-Sanchez C, Martinez-Navarrete G, Humphreys L, et al. (2015). Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomed-Nanotechnol Biol Med 11:835–43.
  • Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K. (2010). Single cell optical transfection. J R Soc Interface 7:863–71.
  • Sun X, Gutierrez A, Yacaman MJ, et al. (2000). Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater Sci Eng A 286:157–60.
  • Sun Y, Jurgovsky K, Möller P, et al. (1998). Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther 5:481–90.
  • Suzuki T, Shin BC, Fujikura K, et al. (1998). Direct gene transfer into rat liver cells by in vivo electroporation. Febs Lett 425:436–40.
  • Tirlapur UK, König K. (2002). Cell biology: Targeted transfection by femtosecond laser. Nature 418:290–1.
  • Todorova R. (2011). Comparative analysis of the methods of drug and protein delivery for the treatment of cancer, genetic diseases and diagnostics. Drug Delivery 18:586–98.
  • Tomitaka, A, Kobayashi, H, Yamada, T, et al. (2010). Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field.
  • Tomizawa M, Shinozaki F, Motoyoshi Y, et al. (2013). Sonoporation: Gene transfer using ultrasound. World J Methodol 3:39–44.
  • Trimble C, Lin CT, Hung CF, et al. (2003). Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 21:4036.
  • Tsampoula X, Taguchi K, Cizmar T, et al. (2008). Fibre based cellular transfection. Opt Express 16:17007–13.
  • Tsukakoshi M, Kurata S, Nomiya Y, et al. (1984). A novel method of dna transfection by laser microbeam cell surgery. Appl Phys B 35:135–40.
  • Umebayashi Y, Miyamoto Y, Wakita M, et al. (2003). Elevation of plasma membrane permeability on laser irradiation of extracellular latex particles. J Biochem 134:219–24.
  • Unger E, Porter T, Lindner J, Grayburn P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–26.
  • Van Meirvenne S, Straetman L, Heirman C, et al. (2002). Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9:787–97.
  • Vanbever R, Préat V. (1999). In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev 35:77–88.
  • Vanzha E, Pylaev T, Prilepskii A, et al. (2017). Cell culture surfaces with immobilized gold nanostars: a new approach for laser-induced plasmonic cell optoporation. In E. A. Genina, V. V. Tuchin (Eds.), Proceedings of SPIE (Vol. 10336).
  • Villemejane J, Mir LM. (2009). Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–19.
  • Wagstaff P, Buijs M, van den Bos W, et al. (2016). Irreversible electroporation: state of the art. Onco Targets Ther 9:2437–46.
  • Wang Y, Cui H, Li K, et al. (2014). A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9:e106612.
  • Wang Y, Cui H, Sun C, et al. (2013). Study on performance of magnetic fluorescent nanoparticles as gene carrier and location in pig kidney cells. Nanoscale Res Lett 8:127–6.
  • Wang Q, Jiang W, Chen Y, et al. (2014). In vivo electroporation of minicircle DNA as a novel method of vaccine delivery to enhance HIV-1-specific immune responses. J Virol 88:1924–34.
  • Washbourne P, McAllister AK. (2002). Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–73.
  • Weiland O, Ahlen G, Diepolder H, et al. (2013). Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 21:1796–805.
  • Yamaguchi A, Hosokawa Y, Louit G, et al. (2008). Nanoparticle injection to single animal cells using femtosecond laser-induced impulsive force. Appl Phys A 93:39–43. & PROCESSING,
  • Yao C, Li Z, Zhang Z. (2005b). Study on the Fundamental of the Laser High Precision Microsurgery. Acta Optica 25:12–1664. SINICA.
  • Yao C, Qu X, Zhang Z, et al. (2009). Influence of laser parameters on nanoparticle-induced membrane permeabilization. J Biomed Opt 14:054034–540345.
  • Yao C, Qu X, Zhang Z. (2009). Laser-based transfection with conjugated gold nanoparticles. Chin Opt Lett 7:898–900.
  • Yao CP, Rahmanzadeh R, Endl E, et al. (2005). Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles. J Biomed Opt 10:064012–640126.
  • Yao C, Rudnitzki F, Huettmann G, et al. (2017). Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation. Int J Nanomed 12:5659–72.
  • Yao C, Zhang Z, Rahmanzadeh R, Huettmann G. (2008). Laser-based gene transfection and gene therapy. IEEE Trans Nanobioscience 7:111–9.
  • Yarmush ML, Golberg A, Serša A, et al. (2014). Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. (2014). Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–55.
  • Young JL, Dean DA. (2015). Electroporation-mediated gene delivery. Adv Genet 89:49.
  • Zhang Y, Chang R, Li M, et al. (2016). Docetaxel-loaded lipid microbubbles combined with ultrasound-triggered microbubble destruction for targeted tumor therapy in MHCC-H cells. OTT 9:4763–71.
  • Zhang Y, Yu LC. (2008). Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol 19:506.
  • Zhao X, Cui H, Chen W, et al. (2014). Morphology, structure and function characterization of pei modified magnetic nanoparticles gene delivery system. PLoS One 9:e98919.
  • Zhao X, Meng Z, Wang Y, et al. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants 3:956–64.
  • Zhou QL, Chen ZY, Wang YX, et al. (2014). Ultrasound-mediated local drug and gene delivery using nanocarriers. Biomed Res Int 2014:1.
  • Zhou X, Liu B, Yu X, et al. (2007). Using magnetic force to enhance immune response to DNA vaccine. Small 3:1707–13.