1,443
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: D-optimal statistical design, in vitro and in vivo performance

ORCID Icon, , &
Pages 1448-1460 | Received 26 Apr 2018, Accepted 28 May 2018, Published online: 14 Jun 2018

References

  • 〈711〉 Dissolution (2011). In: The United States Pharmacopeial Convention. 1–8.
  • Acharya S, Sahoo SK. (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–83.
  • Akbu J, Durmaz G. (1994). Preparation and evaluation of cross-linked chitosan microspheres containing furosemide. Int J Pharm 111:217–22.
  • Alvarado HL, Abrego G, Garduño-Ramirez ML, et al. (2015). Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine 11:521–30.
  • Balmert SC, Zmolek AC, Glowacki AJ, et al. (2015). Positive charge of ‘sticky’ peptides and proteins impedes release from negatively charged PLGA matrices. J Mater Chem B 3:4723–34.
  • Bayomi MA, Al-Suwayeh SA, El-Helw AM, Mesnad AF. (1998). Preparation of casein-chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique. Pharm Acta Helv 73:187–92.
  • Cassie ABD, Baxter S. (1944). Wettability Of porous surfaces. Trans Faraday Soc 40:546–51.
  • Choi JS, Burm JP. (2005). Pharmacokinetics of verapamil and its major metabolite, nor- verapamil from oral administration of verapamil in rabbits with hepatic failure induced by carbon tetrachloride. Arch Pharm Res 28:483–7.
  • Cohen JL, Hubert BB, Leeson LJ, et al. (1990). The development of USP dissolution and drug release standards. Pharm Res 7:983–7.
  • Akmal D, Dewi Lubis A, D AP, et al. (2015). Use of biopolymer of polycaprolactone as matrix of verapamil hydrochloride microcapsule. J Chem Pharm Res 7:683–9.
  • Deng R, Hu YM, Wang L, et al. (2017). An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces. Appl Surf Sci 402:301–7.
  • Deng X, Mammen L, Butt HJ, Vollmer D. (2012). Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70.
  • Dey N, Majumdar S, Rao M. (2008). Multiparticulate drug delivery systems for controlled release. Trop J Pharm Res 7:1067–75.
  • Elzubair A, Elias CN, Suarez JCM, et al. (2006). The physical characterization of a thermoplastic polymer for endodontic obturation. J Dent 34:784–9.
  • Fürst T. (2009). Multiparticulate sustained release formulations with EUDRAGIT® range of polymers. In: 64th Eudragit® Workshop- 6th international controlled release workshop. 18 Feb, Darmstadt.
  • Gentile P, Chiono V, Carmagnola I, Hatton PV. (2014). An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–59.
  • Goto Y, Takashima H, Takishita K, Sawada H. (2011). Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments. J Colloid Interface Sci 362:375–81.
  • Gupta B, Poudel BK, Pathak S, et al. (2016). Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles. AAPS PharmSciTech 17:652–62.
  • Hoffart V, Ubrich N, Simonin C, et al. (2002). Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics. Drug Dev Ind Pharm 28:1091–9.
  • Jain RA. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–90.
  • Jankowski A, Marzec A, Lamparczyk H. (1992). Comparative bioavailability of verapamil from rapidly absorbed and slow release preparations. J Pharm Biomed Anal 10:1101–3.
  • Jawed S, Sorathiya A, Srivastava AK. (2017). Floating controlled drug delivery system of verapamil loaded Microballoons. Pharma Innovation 6:85–8.
  • Ji S, Ramadhianti PA, Nguyen T, et al. (2013). Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectron Eng 111:404–8.
  • Jiao Y, Ubrich N, Marchand-Arvier M, et al. (2002). In Vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 105:230–5.
  • Katz B, Rosenberg A, Frishman WH. (1995). Controlled-release drug delivery systems in cardiovascular medicine. Am Heart J. 129:359–68.
  • Khamanga SM, Walker RB. (2011). Drug transport mechanisms from carbopol/eudragit verapamil sustained- release tablets. Dissolution Technol 18:30–8.
  • Kiliçarslan M, Baykara T. (2003). The effect of the drug/polymer ratio on the properties of the verapamil HCl loaded microspheres. Int J Pharm 252:99–109.
  • Kunta JR, Lee SH, Perry BA, et al. (2004). Differentiation of gut and hepatic first-pass loss of verapamil in intestinal and vascular access-ported (IVAP) rabbits. Drug Metabolism and Disposition 32:1293–8.
  • Lima AC, Sher P, Mano JF. (2012). Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opinion on Drug Delivery 9:231–48.
  • Lima AC, Song W, Blanco-Fernandez B, et al. (2011). Synthesis of temperature-responsive Dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res 28:1294–305.
  • Mainardes RM, Evangelista RC. (2005). PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290:137–44.
  • Manna O, Das SK, Sharma R, Kar KK. (2017). Superhydrophobic and superoleophobic surfaces in composite materials. In: K.K. Kar, ed. Composite materials. Berlin, Heidelberg: Springer Science + Business Media, LLC, 647–686.
  • Marvola M, Kannikoski A, Taskinen J, Ottoila P. (1985). Assessment of bioavailabilitv of experimental single-unit sustained release tablets 6f verapamil hydrochloride using the stable isotope technique. Afr J Pharm Pharmacol 37:766–70.
  • McTavish D. b, Sorkin EM. (1989). Verapamil. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs 38:19–76.
  • Mobarak DH, Salah S, Elkheshen SA. (2014). Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharml Dev Technol 19:891–900.
  • Newton I. (1729). In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction. In: ‘Principia’, Book 3, General Scholium, in Volume 2 of Andrew Motte’s English translation. New York: Daniel Adee.
  • Nordstrom P. (2011). Formation of polymeric nanoparticles encapsulating and releasing a new hydrophobic cancer drug [Thesis]. Goteborg, Sweden: Chalmers University of Technology.
  • Nounou MM, El-Khordagui LK, Khalafallah N. a, Khalil S. a. (2006). In vitro release of hydrophilic and hydrophobic drugs from liposomal dispersions and gels. Acta Pharm 56:311–24.
  • Patel YL, Sher P, Pawar AP. (2006). The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech 7:E24–E7.
  • Peng S, Deng W. (2015). A simple method to prepare superamphiphobic aluminum surface with excellent stability. Colloids Surf A 481:143–50.
  • Piyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N. (2007). Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS PharmSciTech 8:120–E11.
  • Prasertmanakit S, Praphairaksit N, Chiangthong W, Muangsin N. (2009). Ethyl cellulose microcapsules for protecting and controlled release of folic acid. AAPS PharmSciTech 10:1104–12.
  • Puga AM, Catarina A, Mano JF, et al. (2013). Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydr Polym 98:331–40.
  • Qing Y, Yang C, Zhao Q, et al. (2017). Simple fabrication of superhydrophobic/superoleophobic surfaces on copper substrate by two-step method. J Alloys Compd 695:1878–83.
  • Rajabi-Siahboomi AR. (2017). Multiparticulate drug delivery: formulation, processing and manufacturing. PA, USA: Springer Science + Business Media, LLC.
  • Ramesh DV. (2009). Development of a process for microencapsulation of a model protein with poly (e-caprolactone) using a modified W/O/O technique. Trends Biomater Artif Organs 23:46–54.
  • Ravi PR, Vats R, Balija J, et al. (2014). Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydr Polym 110:320–8.
  • Rial-Hermida MI, Oliveira NM, Concheiro A, et al. (2014). Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomater 10:4314–22.
  • Saleem MA, Kotadia DR, Kulkarni RV. (2012). Effect of formulation variables on dissolution of water-soluble drug from polyelectrolyte complex beads. Dissolution Technol 19:21–8.
  • Sheen Y-C, Huang Y-C, Liao C-S, et al. (2008). New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica nanoparticles. J Polym Sci B Polym Phys 46:1984–90.
  • Sinha VR, Bansal K, Kaushik R, et al. (2004). Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23.
  • Song C, Labhasetwar V, Murphy H, et al. (1997). Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212.
  • Song W, Lima AC, Mano JF. (2010). Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6:5868–71.
  • Sonje A, Chandra A. (2013). Comprehensive review on Eudragit Polymers. Int Res J Pharm 4:71–4.
  • Sreenivasa Rao B, Seshasayana A, Pardha Saradhi SV, et al. (2001). Correlation of ‘in vitro’ release and ‘in vivo’ absorption characteristics of rifampicin from ethylcellulose coated nonpareil beads. Int J Pharm 230:1–9.
  • Tao Y, Lu Y, Sun Y, et al. (2009). Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int J Pharm 378:30–6.
  • Tekade BW, Thakare VM, Jadhao UT, Kazi F. (2014). Optimization and in vitro evaluation of verapamil hydrochloride floating bilayer tablet. Pharma Innovation 3:48–56.
  • Woodruff MA, Hutmacher DW. (2010). The return of a forgotten polymer - polycaprolactone in the 21st century. Prog Polym Sci 35:1217–56.
  • Yassin AEB, Alsarra IA, Al-mohizea AM. (2006). Chitosan beads as a new gastroretentive system of verapamil. Sci Pharm 74:175–88.
  • Yousry C, Elkheshen SA, El-laithy HM, et al. (2017). Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur J Pharm Sci 100:142–54.
  • Yousry C, Fahmy RH, Essam T, et al. (2016). Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm 42:1752–62.
  • Yuan Y, Lee TR. (2013). Contact angle and wetting properties. In: G. Bracco and B. Holst, eds. Surface science techniques. Berlin: Springer.