6,549
Views
133
CrossRef citations to date
0
Altmetric
Critical Review

The challenges of oral drug delivery via nanocarriers

, &
Pages 1694-1705 | Received 17 Apr 2018, Accepted 12 Jul 2018, Published online: 03 Nov 2018

References

  • According to personal communication from abdata.de (2017)
  • Anselmo AC, Mitragotri S. (2016). Nanoparticles in the clinic. Bioeng Transl Med 1:10–29.
  • Antileo E, Garri C, Tapia V, et al. (2013). Endocytic pathway of exogenous iron-loaded ferritin in intestinal epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 304:G655–61.
  • Bannunah AM, Vllasaliu D, Lord J, Stolnik S. (2014). Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharmaceutics 11:4363–73.
  • Bazzoni G, Dejana E. (2004). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901.
  • Bobo D, Robinson KJ, Islam J, et al. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–87.
  • Cedervall T, Lynch I, Lindman S, et al. (2007). Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–5.
  • Chen R, Huang G, Ke PC. (2010). Calcium-enhanced exocytosis of gold nanoparticles. Appl Phys Lett 97:093706.
  • Chithrani BD, Chan WC. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–50.
  • Chu Z, Huang Y, Tao Q, Li Q. (2011). Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3:3291.
  • Clark MA, Hirst BH, Jepson MA. (2000). Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev 43:207–23.
  • Cordonnier MN, Dauzonne D, Louvard D, Coudrier E. (2001). Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 12:4013–29.
  • Cui Y, Shan W, Zhou R, et al. (2018). The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale 10:1494–507.
  • Dan M, Cochran DB, Yokel RA, Dziubla TD. (2013). Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery. PLoS One 8:e81051.
  • de Sousa IP, Steiner C, Schmutzler M, et al. (2015). Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur J Pharm Biopharm 97:273–9.
  • des Rieux A, Ragnarsson EG, Gullberg E, et al. (2005). Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 25:455–65.
  • Dombu CY, Kroubi M, Zibouche R, et al. (2010). Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology 21:355102.
  • Dünnhaupt S, Kammona O, Waldner C, et al. (2015). Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur J Pharm Biopharm 96:447–53.
  • Dutta D, Donaldson JG. (2012). Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist 2:203–8.
  • Ehrenberg MS, Friedman AE, Finkelstein JN, et al. (2009). The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–10.
  • Ensign LM, Cone R, Hanes J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–70.
  • Fazlollahi F, Angelow S, Yacobi NR, et al. (2011). Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine 7:588–94.
  • Ferrati S, Mack A, Chiappini C, et al. (2010). Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale 2:1512–20.
  • Fievez V, Plapied L, des Rieux A, et al. (2009). Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm 73:16–24.
  • Fonte P, Nogueira T, Gehm C, et al. (2011). Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 1:299–308.
  • Fowler R, Vllasaliu D, Trillo FF, et al. (2013). Nanoparticle transport in epithelial cells: pathway switching through bioconjugation. Small 9:3282–94.
  • Freese C, Unger RE, Deller RC, et al. (2013). Uptake of poly(2-hydroxypropylmethacrylamide)-coated gold nanoparticles in microvascular endothelial cells and transport across the blood–brain barrier. Biomater Sci 1:824.
  • Frey A, Giannasca KT, Weltzin R, et al. (1996). Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184:1045–59.
  • Garinot M, Fiévez V, Pourcelle V, et al. (2007). PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204.
  • Gebert A, Rothkötter H-J, Pabst R. (1996). M cells in Peyer's patches of the intestine. In: Kwang W. Jeon, ed. International review of cytology. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press, 91–159.
  • Gebert A, Steinmetz I, Fassbender S, Wendlandt K-H. (2004). Antigen transport into Peyer's patches: increased uptake by constant numbers of M cells. Am J Pathol 164:65–72.
  • Gerasimenko JV, Gerasimenko OV, Petersen OH. (2001). Membrane repair: Ca(2+)-elicited lysosomal exocytosis. Curr Biol 11:R971–4.
  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. (2008). Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–43.
  • He B, Jia Z, Du W, et al. (2013). The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials 34:4309–26.
  • He B, Lin P, Jia Z, et al. (2013). The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 34:6082–98.
  • Hintzen F, Perera G, Hauptstein S, et al. (2014). In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int J Pharm 472:20–6.
  • Ho YT, Kamm RD, Kah JCY. (2018). Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. Nanoscale 10:12386–12397.
  • Hofmann D, Tenzer S, Bannwarth MB, et al. (2014). Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano 8:10077–88.
  • Hu Y-B, Dammer EB, Ren R-J, Wang G. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 4:18.
  • Iversen T-G, Skotland T, Sandvig K. (2011). Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–85.
  • Johannessen LE, Spilsberg B, Wiik-Nielsen CR, et al. (2013). DNA-fragments are transcytosed across CaCo-2 cells by adsorptive endocytosis and vesicular mediated transport. PLoS One 8:e56671.
  • Kerr MC, Teasdale RD. (2009). Defining macropinocytosis. Traffic 10:364–71.
  • Kim YS, Ho SB. (2010). Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–30.
  • Koivusalo M, Welch C, Hayashi H, et al. (2010). Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188:547–63.
  • Kunisawa J, Kurashima Y, Kiyono H. (2012). Gut-associated lymphoid tissues for the development of oral vaccines. Adv Drug Deliv Rev 64:523–30.
  • Lai SK, Hida K, Man ST, et al. (2007). Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–84.
  • Lai SK, O'Hanlon DE, Harrold S, et al. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci 104:1482–7.
  • Lai SK, Wang Y-Y, Hanes J. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–71.
  • Landgraf L, Muller I, Ernst P, et al. (2015). Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization. Beilstein J Nanotechnol 6:300–12.
  • Lerch S, Ritz S, Bley K, et al. (2015). Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine 11:1585–96.
  • Liu D, Lin B, Shao W, et al. (2014). In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Appl Mater Interfaces 6:2131–6.
  • Mabbott NA, Donaldson DS, Ohno H, et al. (2013). Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6:666.
  • Mahammad S, Parmryd I. (2015). Cholesterol depletion using methyl-β-cyclodextrin. In: Dylan M. Owen, ed. Methods in membrane lipids. New York: Humana Press (part of Springer), 91–102.
  • Mei L, Zhang Z, Zhao L, et al. (2013). Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65:880–90.
  • Meng N, Han L, Pan X, et al. (2015). Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol Toxicol 31:15–27.
  • Mindell JA. (2012). Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86.
  • Müller C, Leithner K, Hauptstein S, et al. (2013). Preparation and characterization of mucus-penetrating papain/poly (acrylic acid) nanoparticles for oral drug delivery applications. J Nanopart Res 15:1353.
  • Oh N, Park JH. (2014). Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano 8:6232–41.
  • Oheim M, Kirchhoff F, Stuhmer W. (2006). Calcium microdomains in regulated exocytosis. Cell Calcium 40:423–39.
  • Olmsted SS, Padgett JL, Yudin AI, et al. (2001). Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81:1930–7.
  • Ozdener GB, Bais MV, Trackman PC. (2016). Determination of cell uptake pathways for tumor inhibitor lysyl oxidase propeptide. Mol Oncol 10:1–23.
  • Panyam J, Labhasetwar V. (2003). Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20:212–20.
  • Parayath NN, Nehoff H, Müller P, et al. (2015). Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery–dual uptake through enterocytes and M-cells. Int J Nanomed 10:4653.
  • Pelkmans L, Püntener D, Helenius A. (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–9.
  • Pridgen EM, Alexis F, Kuo TT, et al. (2013). Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 5:213ra167.
  • Reinholz J, Diesler C, Schöttler S, et al. (2018). Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomater 71:432–443.
  • Ritz S, Schöttler S, Kotman N, et al. (2015). Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16:1311–21.
  • Roger E, Kalscheuer S, Kirtane A, et al. (2012). Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–10.
  • Rosenthal R, Günzel D, Finger C, et al. (2012). The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 33:2791–800.
  • Saftig P, Klumperman J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–35.
  • Saftig P. (2005). Lysosomes. Boston, MA: Springer.
  • Sahay G, Alakhova DY, Kabanov AV. (2010). Endocytosis of nanomedicines. J Control Release 145:182–95.
  • Sakhtianchi R, Minchin RF, Lee KB, et al. (2013). Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 201–202:18–29.
  • Salaun C, James DJ, Chamberlain LH. (2004). Lipid rafts and the regulation of exocytosis. Traffic 5:255–64.
  • Sato K, Nagai J, Mitsui N, et al. (2009). Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Life Sci 85:800–7.
  • Schenk M, Mueller C. (2008). The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 22:391–409.
  • Schöttler S, Becker G, Winzen S, et al. (2016). Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nature Nanotech 11:372–7.
  • Serda RE, Mack A, van de Ven AL, et al. (2010). Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small 6:2691–700.
  • Settembre C, Fraldi A, Medina DL, Ballabio A. (2013). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–96.
  • Song Q, Yao L, Huang M, et al. (2012). Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials 33:6769–82.
  • Vllasaliu D, Alexander C, Garnett M, et al. (2012). Fc-mediated transport of nanoparticles across airway epithelial cell layers. J Control Release 158:479–86.
  • Walczyk D, Bombelli FB, Monopoli MP, et al. (2010). What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–8.
  • Wang JA, Meyer TF, Rudel T. (2008). Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol 298:209–21.
  • Wang L-H, Rothberg KG, Anderson R. (1993). Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–17.
  • Wang YY, Lai SK, Suk JS, et al. (2008). Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed 47:9726–9.
  • Wang Z, Tiruppathi C, Cho J, et al. (2011). Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life 63:659–67.
  • Wang Z, Tiruppathi C, Minshall RD, Malik AB. (2009). Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3:4110–6.
  • Wiley DT, Webster P, Gale A, Davis ME. (2013). Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110:8662–7.
  • World Health Organization. (2016). Global report on diabetes. Geneva, Switzerland: World Health Organization.
  • Yanes RE, Tarn D, Hwang AA, et al. (2013). Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small 9:697–704.
  • Ye D, Raghnaill MN, Bramini M, et al. (2013). Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale 5:11153–65.
  • Ye D, Dawson KA, Lynch I. (2015). A TEM protocol for quality assurance of in vitro cellular barrier models and its application to the assessment of nanoparticle transport mechanisms across barriers. Analyst 140:83–97.
  • Zhang Z, Huang J, Jiang S, et al. (2013). Porous starch based self-assembled nano-delivery system improves the oral absorption of lipophilic drug. Int J Pharm 444:162–8.
  • Zhang Z, Huang Y, Gao F, et al. (2011). Daidzein–phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats. Nanoscale 3:1780–7.
  • Zubareva AA, Shcherbinina TS, Varlamov VP, Svirshchevskaya EV. (2015). Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles. Nanoscale 7:7942–52.