2,043
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins

, , , , , , , , , , , , & show all
Pages 1950-1962 | Received 12 Aug 2018, Accepted 08 Oct 2018, Published online: 04 Dec 2018

References

  • Adamiak B, Trybala E, Mardberg K, et al. (2010). Human antibodies to herpes simplex virus type 1 glycoprotein C are neutralizing and target the heparan sulfate-binding domain. Virology 400:197–206.
  • Alvarez-Breckenridge CA, Yu J, Price R, et al. (2012a). NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med 18:1827–34.
  • Alvarez-Breckenridge CA, Yu J, Price R, et al. (2012b). The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 86:4566–77.
  • Argnani R, Boccafogli L, Marconi PC, et al. (2004). Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide. Gene Ther 11:1087–98.
  • Arii J, Goto H, Suenaga T, et al. (2010). Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature 467:859–62.
  • Atanasiu D, Cairns TM, Whitbeck JC, et al. (2013). Regulation of herpes simplex virus gB-induced cell-cell fusion by mutant forms of gH/gL in the absence of gD and cellular receptors. MBio 00046-13.
  • Atanasiu D, Saw WT, Cohen GH, et al. (2010a). Cascade of events governing cell-cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol 84:12292–9.
  • Atanasiu D, Whitbeck JC, de Leon MP, et al. (2010b). Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84:3825–34.
  • Awasthi S, Balliet JW, Flynn JA, et al. (2014). Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs. J Virol 88:2000–10.
  • Awasthi S, Lubinski JM, Shaw CE, et al. (2011). Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 85:10472–86.
  • Baek H, Uchida H, Jun K, et al. (2011). Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 19:507–14.
  • Barros FFT, Powe DG, Ellis IO, et al. (2010). Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology 56:560–72.
  • Bender FC, Samanta M, Heldwein EE, et al. (2007). Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J Virol 81:3827–41.
  • Bender FC, Whitbeck JC, Lou H, et al. (2005). Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol 79:11588–97.
  • Cairns TM, Friedman LS, Lou H, et al. (2007). N-terminal mutants of herpes simplex virus type 2 gH are transported without gL but require gL for function. J Virol 81:5102–11.
  • Cairns TM, Huang Z-Y, Gallagher JR, et al. (2015). Patient-Specific neutralizing antibody responses to herpes simplex virus are attributed to epitopes on gD, gB, or both and can be type specific. J Virol 89:9213–31.
  • Cairns TM, Huang Z-Y, Whitbeck JC, et al. (2014). Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol 88:12612–22.
  • Cairns TM, Milne RSB, Ponce-de-Leon M, et al. (2003). Structure-function analysis of herpes simplex virus type 1 gD and gH-gL: clues from gDgH chimeras. J Virol 77:6731–42.
  • Cairns TM, Shaner MS, Zuo Y, et al. (2006). Epitope mapping of herpes simplex virus type 2 gH/gL defines distinct antigenic sites, including some associated with biological function. J Virol 80:2596–608.
  • Cairns TM, Whitbeck JC, Lou H, et al. (2011). Capturing the herpes simplex virus core fusion complex (gB-gH/gL) in an acidic environment. J Virol 85:6175–84.
  • Cao H, Zhang GR, Geller AI. (2010). Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C-staphylococcus A protein. Brain Res 1351:1–12.
  • Carfí A, Willis SH, Whitbeck JC, et al. (2001). Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8:169–79.
  • Chou J, Kern ER, Whitley RJ, et al. (1990). Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250:1262–6.
  • Chowdary TK, Cairns TM, Atanasiu D, et al. (2010). Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17:882–8.
  • Cocchi F, Menotti L, Mirandola P, et al. (1998). The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol 72:9992–10002.
  • Coffin RS. (2015). From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol 13:93–100.
  • Connolly SA, Landsburg DJ, Carfi A, et al. (2005). Potential nectin-1 binding site on herpes simplex virus glycoprotein d. J Virol 79:1282–95.
  • Cooper RS, Heldwein EE. (2015). Herpesvirus gB: a finely tuned fusion machine. Viruses 7:6552–69.
  • Däumer MP, Schneider B, Giesen DM, et al. (2011). Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity. Med Microbiol Immunol 200:85–97.
  • Debinski W, Gibo DM, Slagle B, et al. (1999). Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol 15:481–6.
  • Di Giovine P, Settembre EC, Bhargava AK, et al. (2011). Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog 7:e1002277,
  • Drolet BS, Mott KR, Lippa AM, et al. (2004). Glycoprotein C of herpes simplex virus type 1 is required to cause keratitis at low infectious doses in intact rabbit corneas. Curr Eye Res 29:181–9.
  • Du R, Wang L, Xu H, et al. (2017). A novel glycoprotein D-specific monoclonal antibody neutralizes herpes simplex virus. Antiviral Res 147:131–41.
  • Eing BR, Kuhn JE, Braun RW. (1989). Neutralizing activity of antibodies against the major herpes simplex virus type 1 glycoproteins. J Med Virol 27:59–65.
  • Eisenberg RJ, Atanasiu D, Cairns TM, et al. (2012). Herpes virus fusion and entry: a story with many characters. Viruses 4:800–32.
  • Eis-Hubinger AM, Schmidt DS, Schneweis KE. (1993). Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes. J Gen Virol 74:379–85.
  • Fan Q, Kopp S, Connolly SA, et al. (2017). Mapping sites of herpes simplex virus type 1 glycoprotein D that permit insertions and impact gD and gB receptors usage. Sci Rep 7:43712.
  • Farrell CJ, Zaupa C, Barnard Z, et al. (2008). Combination immunotherapy for tumors via sequential intratumoral injections of oncolytic herpes simplex virus 1 and immature dendritic cells. Clin Cancer Res 14:7711–6.
  • Fountzilas C, Patel S, Mahalingam D. (2017). Review: oncolytic virotherapy, updates and future directions. Oncotarget 8:102617–39.
  • Friedman HM. (2003). Immune evasion by herpes simplex virus type 1, strategies for virus survival. Trans Am Clin Climatol Assoc 114:103–12.
  • Fu X, Zhang X. (2002). Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 62:2306–12.
  • Fusco D, Forghieri C, Campadelli-Fiume G. (2005). The pro-fusion domain of herpes simplex virus glycoprotein D (gD) interacts with the gD N terminus and is displaced by soluble forms of viral receptors. Proc Natl Acad Sci USA 102:9323–8.
  • Gatta V, Petrovic B, Campadelli-Fiume G. (2015). The engineering of a novel ligand in gH Confers to HSV an expanded tropism independent of gD activation by its receptors. PLoS Pathog 11:e1004907.
  • Geraghty RJ. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280:1618–20.
  • Gianni T, Massaro R, Campadelli-Fiume G. (2015). Dissociation of HSV gL from gH by αvβ6- or αvβ8-integrin promotes gH activation and virus entry . Proc Natl Acad Sci USA112:E3901–10.
  • Gianni T, Salvioli S, Chesnokova LS, et al. (2013). αvβ6- and αvβ8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog 9:e1003806.
  • Grandi P, Fernandez J, Szentirmai O, et al. (2010). Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther 17:655–63.
  • Grandi P, Wang S, Schuback D, et al. (2004). HSV-1 virions engineered for specific binding to cell surface receptors. Mol Ther 9:419–27.
  • Guo YA, Chang MM, Huang W, et al. (2018). Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 9:1520.
  • Guo Y, Alexander K, Clark AG, et al. (2016). Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. RNA 22:1663–72.
  • Guo Y, Wei X, Das J, et al. (2013). Dissecting disease inheritance modes in a three-dimensional protein network challenges the “guilt-by-association” principle. Am J Hum Genet 93:78–89.
  • Hadigal SR, Agelidis AM, Karasneh GA, et al. (2015). Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 6:6985.
  • Hannah BP, Cairns TM, Bender FC, et al. (2009). Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 83:6825–36.
  • Hari D, Xin H-W, Jaiswal K, et al. (2011). Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal cosegregation from human cancers. Stem Cells Dev 20:1649–58.
  • Heldwein EE, Krummenacher C. (2008). Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 65:1653–68.
  • Heldwein EE, Lou H, Bender FC, et al. (2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–20.
  • Hellums EK, Markert JM, Parker JN, et al. (2005). Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol 7:213–24.
  • Herold BC, Visalli RJ, Susmarski N, et al. (1994). Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75:1211–22.
  • Herold BC, WuDunn D, Soltys N, et al. (1991). Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65:1090–8.
  • Ho IAW, Miao L, Sia KC, et al. (2010). Targeting human glioma cells using HSV-1 amplicon peptide display vector. Gene Ther 17:250–60.
  • Huang Y-Y, Yu Z, Lin S-F, et al. (2007). Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. J Clin Endocrinol Metab 92:1965–70.
  • Hu JCC, Coffin RS, Davis CJ, et al. (2006). A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12:6737–47.
  • Hu S, Qian M, Zhang H, et al. (2017). Whole-genome noncoding sequence analysis in T-cell acute lymphoblastic leukemia identifies oncogene enhancer mutations. Blood 129:3264–8.
  • Hutchinson L, Browne H, Wargent V, et al. (1992). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–50.
  • Isola VJ, Eisenberg RJ, Siebert GR, et al. (1989). Fine mapping of antigenic site II of herpes simplex virus glycoprotein D. J Virol 63:2325–34.
  • Jackson C, Browell D, Gautrey H, et al. (2013). Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance. Int J Cell Biol 2013:973584.
  • Jiang A, Chu TH, Nocken F, et al. (1998). Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J Virol 72:10148–56.
  • Jogger CR, Montgomery RI, Spear PG. (2004). Effects of linker-insertion mutations in herpes simplex virus 1 gD on glycoprotein-induced fusion with cells expressing HVEM or nectin-1. Virology 318:318–26.
  • Johnson DC, Huber MT. (2002). Directed egress of animal viruses promotes cell-to-cell spread. J Virol 76:1–8.
  • Kamiyama H, Zhou G, Roizman B. (2006). Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor. Gene Ther 13:621–9.
  • Kampe P, Knoblich A, Dietrich M, et al. (1985). Differences in humoral immunogenicity between herpes simplex virus types 1 and 2. J Gen Virol 66:2215–23.
  • Karsy M, Arslan E, Moy F. (2012). Current Progress on understanding MicroRNAs in glioblastoma multiforme. Genes Cancer 3:3–15.
  • Kemeny N, Brown K, Covey A, et al. (2006). Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther 17:1214–24.
  • Klyachkin YM, Stoops KD, Geraghty RJ. (2006). Herpes simplex virus type 1 glycoprotein L mutants that fail to promote trafficking of glycoprotein H and fail to function in fusion can induce binding of glycoprotein L-dependent anti-glycoprotein H antibodies. J Gen Virol 87:759–67.
  • Krummenacher C, Nicola AV, Whitbeck JC, et al. (1998). Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 72:7064–74.
  • Krummenacher C, Rux AH, Whitbeck JC, et al. (1999). The first immunoglobulin-like domain of HveC is sufficient to bind herpes simplex virus gD with full affinity, while the third domain is involved in oligomerization of HveC. J Virol 73:8127–37.
  • Krummenacher C, Supekar VM, Whitbeck JC, et al. (2005). Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 24:4144–53.
  • Kuan C-T, Wikstrand CJ, Archer G, et al. (2000). Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int J Cancer 88:962–9.
  • Kulu Y, Dorfman JD, Kuruppu D, et al. (2009). Comparison of intravenous versus intraperitoneal administration of oncolytic herpes simplex virus 1 for peritoneal carcinomatosis in mice. Cancer Gene Ther 16:291–7.
  • Laquerre S, Anderson DB, Stolz DB, et al. (1998). Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 72:9683–97.
  • Lazear E, Carfi A, Whitbeck JC, et al. (2008). Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 82:700–9.
  • Leoni V, Gatta V, Palladini A, et al. (2015). Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 6:34774–87.
  • Leoni V, Gatta V, Casiraghi C, et al. (2017). A Strategy for cultivation of retargeted oncolytic herpes simplex viruses in non-cancer cells. J Virol 91:00067–17.
  • Leoni V, Petrovic B, Gianni T, et al. (2018). Simultaneous insertion of two ligands in gD for cultivation of oncolytic herpes simplex viruses in noncancer cells and retargeting to cancer receptors. J Virol 92:02132–17.
  • Liu Y, Yu C, Wu Y, et al. (2017). CD44+ fibroblasts increases breast cancer cell survival and drug resistance via IGF2BP3-CD44-IGF2 signalling. J Cell Mol Med 21:1979–88.
  • Lopez M, Cocchi F, Avitabile E, et al. (2001). Novel, soluble isoform of the herpes simplex virus (HSV) receptor nectin1 (or PRR1-HIgR-HveC) modulates positively and negatively susceptibility to HSV infection. J Virol 75:5684–91.
  • Lorimer IAJ, Keppler-Hafkemeyer A, Beers RA, et al. (1996). Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc Natl Acad Sci USA 93:14815–20.
  • MacLean AR, Ul-Fareed M, Robertson L, et al. (1991). Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the 'a' sequence. J Gen Virol 72:631–9.
  • Markert JM, Medlock MD, Rabkin SD, et al. (2000). Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–74.
  • Martuza R, Malick A, Markert J, et al. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252:854–6.
  • Mazzacurati L, Marzulli M, Reinhart B, et al. (2015). Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV. Mol Ther 23:99–107.
  • Menotti L, Cerretani A, Hengel H, et al. (2008). Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 82:10153–61.
  • Menotti L, Nicoletti G, Gatta V, et al. (2009). Inhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells. Proc Natl Acad Sci USA 106:9039–44.
  • Montgomery RI, Warner MS, Lum BJ, et al. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–36.
  • Muggeridge MI, Isola VJ, Byrn RA, et al. (1988). Antigenic analysis of a major neutralization site of herpes simplex virus glycoprotein D, using deletion mutants and monoclonal antibody-resistant mutants. J Virol 62:3274–80.
  • Muggeridge MI. (2000). Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J Gen Virol 81:2017–27.
  • Nakano K, Asano R, Tsumoto K, et al. (2005). Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther 11:617–26.
  • Nanni P, Gatta V, Menotti L, et al. (2013). Preclinical therapy of disseminated HER-2+ ovarian and breast carcinomas with a HER-2-retargeted oncolytic herpesvirus. PLoS Pathog 9:e1003155.
  • Nicola AV, Ponce de Leon M, Xu R, et al. (1998). Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol 72:3595–601.
  • Nicola AV, Straus SE. (2004). Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78:7508–17.
  • Para MF, Parish ML, Noble AG, et al. (1985). Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. J Virol 55:483–8.
  • Peng T, Ponce de Leon M, Novotny MJ, et al. (1998). Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH-gL complex. J Virol 72:6092–103.
  • Peng T, Ponce-de-Leon M, Jiang H, et al. (1998). The gH-gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. J Virol 72:65–72.
  • Petrovic B, Leoni V, Gatta V, et al. (2018). Dual Ligand Insertion in gB and gD of Oncolytic Herpes Simplex Viruses for Retargeting to a Producer Vero Cell Line and to Cancer Cells. J Virol 92:02122–17.
  • Petrovic B, Gianni T, Gatta V, et al. (2017). Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins. PLoS Pathog 13:e1006352.
  • Pol J, Kroemer G, Galluzzi L. (2016). First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5:e1115641.
  • Qadri I, Gimeno C, Navarro D, et al. (1991). Mutations in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and transport of the molecule. Virology 180:135–52.
  • Rehman H, Silk AW, Kane MP, et al. (2016). Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:s40425-016-0158-5.
  • Reisoli E, Gambini E, Appolloni I, et al. (2012). Efficacy of HER2 retargeted herpes simplex virus as therapy for high-grade glioma in immunocompetent mice. Cancer Gene Ther 19:788–95.
  • Riddick G, Fine HA. (2011). Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7:439–50.
  • Rogalin HB, Heldwein EE. (2015). Interplay between the Herpes Simplex Virus 1 gB Cytodomain and the gH Cytotail during Cell-Cell Fusion. J Virol 89:12262–72.
  • Russell SJ, Peng KW, Bell JC. (2012). Oncolytic virotherapy. Nat Biotechnol 30:658–70.
  • Sanna PP, Ramiro-Ibanez F, De Logu A. (2000). Synergistic interactions of antibodies in rate of virus neutralization. Virology 270:386–96.
  • Satoh T, Arii J, Suenaga T, et al. (2008). PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132:935–44.
  • Scheper T, Saschenbrecker S, Steinhagen K, et al. (2010). The glycoproteins C and G are equivalent target antigens for the determination of herpes simplex virus type 1-specific antibodies. J Virol Methods 166:42–7.
  • Senzer NN, Kaufman HL, Amatruda T, et al. (2009). Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 27:5763–71.
  • Shelly SS, Cairns TM, Whitbeck JC, et al. (2012). The membrane-proximal region (MPR) of herpes simplex virus gB regulates association of the fusion loops with lipid membranes. MBio 3:00429–12.
  • Shibata T, Uchida H, Shiroyama T, et al. (2016). Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 23:479–88.
  • Shukla D, Liu J, Blaiklock P, et al. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22.
  • Silverman JL, Greene NG, King DS, et al. (2012). Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J Virol 86:8171–84.
  • Spear PG, Manoj S, Yoon M, et al. (2006). Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 344:17–24.
  • Stampfer SD, Lou H, Cohen GH, et al. (2010). Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1. J Virol 84:12924–33.
  • Suenaga T, Satoh T, Somboonthum P, et al. (2010). Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci USA 107:866–71.
  • Tiwari V, O'Donnell C, Copeland RJ, et al. (2007). Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J Gen Virol 88:1075–9.
  • Todo T, Martuza RL, Rabkin SD, et al. (2001). Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98:6396–401.
  • Turner A, Bruun B, Minson T, et al. (1998). Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–5.
  • Uchida H, Chan J, Goins WF, et al. (2010). A double mutation in glycoprotein gB compensates for ineffective gD-dependent initiation of herpes simplex virus type 1 infection. J Virol 84:12200–9.
  • Uchida H, Chan J, Shrivastava I, et al. (2013). Novel mutations in gB and gH circumvent the requirement for known gD Receptors in herpes simplex virus 1 entry and cell-to-cell spread. J Virol 87:1430–42.
  • Uchida H, Marzulli M, Nakano K, et al. (2013). Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 21:561–9.
  • Varghese S, Rabkin SD, Nielsen GP, et al. (2007). Systemic therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex viruses. Cancer Res 67:9371–9.
  • Varghese S, Rabkin SD, Nielsen PG, et al. (2006). Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. Clin Cancer Res 12:2919–27.
  • Vitu E, Sharma S, Stampfer SD, et al. (2013). Extensive mutagenesis of the HSV-1 gB ectodomain reveals remarkable stability of its postfusion form. J Mol Biol 425:2056–71.
  • Waehler R, Russell SJ, Curiel DT. (2007). Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–87.
  • Wang D, Wang XW, Peng XC, et al. (2018). CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther s41417-018-0016-3.
  • Wang J, Fan Q, Satoh T, et al. (2009). Binding of herpes simplex virus glycoprotein B (gB) to paired immunoglobulin-like type 2 receptor alpha depends on specific sialylated O-linked glycans on gB. J Virol 83:13042–5.
  • Waters AM, Johnston JM, Reddy AT, et al. (2017). Rationale and design of a phase 1 clinical trial to evaluate HSV G207 alone or with a single radiation dose in children with progressive or recurrent malignant supratentorial brain tumors. Hum Gene Ther Clin Dev 28:7–16.
  • Whitbeck JC, Peng C, Lou H, et al. (1997). Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 71:6083–93.
  • Whitbeck JC, Muggeridge MI, Rux AH, et al. (1999). The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J Virol 73:9879–90.
  • Wikstrand CJ, Hale LP, Batra SK, et al. (1995). Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55:3140–8.
  • Wu ZJ, Tang FR, Ma Z-W, et al. (2018). Oncolytic viruses for tumor precision imaging and radiotherapy. Hum Gene Ther 29:204–22.
  • Xin H-W, Ambe CM, Hari DM, et al. (2013a). Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut 62:1777–86.
  • Xin H-W, Ambe CM, Miller TC, et al. (2016). Liver label retaining cancer cells are relatively resistant to the reported anti-cancer stem cell drug metformin. J Cancer 7:1142–51.
  • Xin H-W, Ambe CM, Ray S, et al. (2013b). Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division. J Cancer 4:447–57.
  • Xin H-W, Hari DM, Mullinax JE, et al. (2012). Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells 30:591–8.
  • Yazaki T, Manz HJ, Rabkin SD, et al. (1995). Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res 55:4752–6.
  • Yoon M, Spear PG. (2004). Random mutagenesis of the gene encoding a viral ligand for multiple cell entry receptors to obtain viral mutants altered for receptor usage. Proc Natl Acad Sci USA 101:17252–7.
  • Yoon M, Zago A, Shukla D, et al. (2003). Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1. J Virol 77:9221–31.
  • Yu Z, Adusumilli PS, Eisenberg DP, et al. (2007). Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. Mol Ther 15:103–13.
  • Zhang W, Bao L, Yang S, et al. (2016). Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells. Oncotarget 7:39768–83.
  • Zhou G, Roizman B. (2006). Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA103:5508–13.
  • Zhou G, Roizman B. (2007). Separation of receptor-binding and profusogenic domains of glycoprotein D of herpes simplex virus 1 into distinct interacting proteins. Proc Natl Acad Sci USA 104:4142–6.
  • Zhou G, Ye G-J, Debinski W, et al. (2002). Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci USA 99:15124–9.