5,534
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability

, , , , , & show all
Pages 216-225 | Received 03 Oct 2018, Accepted 19 Nov 2018, Published online: 07 Mar 2019

References

  • Ahmad J, Singhal M, Amin S, et al. (2017). Bile salt stabilized vesicles (bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. CPD 23:1575–88.
  • Allen TM, Cullis PR. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48.
  • Bai C, Peng H, Xiong H, et al. (2011). Carboxymethylchitosan-coated proliposomes containing coix seed oil: characterisation, stability and in vitro release evaluation. Food Chem 129:1695–702.
  • Basavaraj S, Betageri GV. (2014). Improved oral delivery of resveratrol using proliposomal formulation: investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Exp Opin Drug Deliv 11:493–503.
  • Bilzer M, Lauterburg B. (1991). Glutathione metabolism in activated human neutrophils: stimulation of glutathione synthesis and consumption of glutathione by reactive oxygen species. Eur J Clin Invest 21:316–22.
  • Bobbala SKR, Veerareddy PR. (2012). Formulation, evaluation, and pharmacokinetics of isradipine proliposomes for oral delivery. J Liposome Res 22:285–94.
  • Chen GY, Bunt C, Wen JY. (2015). Mucoadhesive polymers-based film as a carrier system for sublingual delivery of glutathione. J Pharm Pharmacol 67:26–34.
  • Chen WL, Yuan ZQ, Liu Y, et al. (2016). Liposomes coated with n-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro. Int J Nanomedicine 11:325–36.
  • Chen Y, Lu Y, Chen J, et al. (2009). Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–60.
  • Choi YI, Kim SK, Lee SW, Sohn Y. (2016). Metallic indium spheres by the anaerobic ethanol oxidation of indium oxide. J Alloy Compd 687:611–5.
  • Chono S, Tanino T, Seki T, Morimoto K. (2007). Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol 59:75–80.
  • Eloy JO, de Souza MC, Petrilli R, et al. (2014). Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B: Biointerfaces 123:345–63.
  • Feng Y, Sun C, Yuan Y, et al. (2016). Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm 501:342–9.
  • Gavrilescu M, Chisti Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 23:471–99.
  • Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, et al. (2012). One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater 2012:1.
  • Han SM, Na YG, Lee HS, et al. (2018). Improvement of cellular uptake of hydrophilic molecule, calcein, formulated by liposome. J Pharm Investig 48:595–601.
  • Kang BS, Choi JS, Lee SE, et al. (2017). Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr Polym 159:39–47.
  • Karn PR, Jin SE, Lee BJ, et al. (2014). Preparation and evaluation of cyclosporin A-containing proliposomes: a comparison of the supercritical antisolvent process with the conventional film method. Int J Nanomedicine 9:5079–91.
  • Katare O, Vyas S, Dixit V. (1991). Proliposomes of indomethacin for oral administration. J Microencapsul 8:1–7.
  • Lopedota A, Trapani A, Cutrignelli A, et al. (2009). The use of Eudragit® RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm 72:509–20.
  • Manca ML, Manconi M, Valenti D, et al. (2012). Liposomes coated with chitosan-xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101:566–75.
  • Manojlovic V, Winkler K, Bunjes V, et al. (2008). Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a rip ii protein. Colloids Surf B: Biointerfaces 64:284–96.
  • Meng F, Hennink WE, Zhong Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–98.
  • Mohtashamian S, Boddohi S. (2017). Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery. J Pharm Investig 47:85–94.
  • Muneer S, Masood Z, Butt S, et al. (2017). Proliposomes as pharmaceutical drug delivery system: a brief review. J Nanomed Nanotechnol 8:448.
  • Naji-Tabasi S, Razavi SMA, Mehditabar H. (2017). Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr Polym 157:1703–13.
  • Nasr M. (2010). In vitro and in vivo evaluation of proniosomes containing celecoxib for oral administration. AAPS PharmSciTech 11:85–9.
  • Ong SG, Ming LC, Lee KS, Yuen KH. (2016). Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 8:25.
  • Ozer I, Chilkoti A. (2017). Site-specific and stoichiometric stealth polymer conjugates of therapeutic peptides and proteins. Bioconjug Chem 28:713–23.
  • Patel GM, Shelat PK, Lalwani AN. (2017). Qbd based development of proliposome of lopinavir for improved oral bioavailability. Eur J Pharm Sci 108:50–61.
  • Payne NI, Timmins P, Ambrose CV, et al. (1986). Proliposomes: a novel solution to an old problem. J Pharm Sci 75:325–9.
  • Pillai GJ, Greeshma MM, Menon D. (2015). Impact of poly(lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions. Colloid Surf B: Biointerfaces 136:1058–66.
  • Rahman I, Kode A, Biswas SK. (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–65.
  • Rojanarat W, Changsan N, Tawithong E, et al. (2011). Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies. IJMS 12:4414–34.
  • Rotar O, Tenedja K, Arkhelyuk A, et al. (2014). Preparation of chitosan nanoparticles loaded with glutathione for diminishing tissue ischemia-reperfusion injury. Int J Adv Eng Nano Technol 1:19–23.
  • Salatin S, Dizaj SM, Khosroushahi AY. (2015). Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Bio Int 39:881–90
  • Shah NM, Parikh J, Namdeo A, et al. (2006). Preparation, characterization and in vivo studies of proliposomes containing cyclosporine A. J Nanosci Nanotechnol 6:2967–73.
  • Sian J, Dexter DT, Lees AJ, et al. (1994). Alterations in glutathione levels in parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–55.
  • Song K-H, Chung S-J, Shim C-K. (2005). Enhanced intestinal absorption of salmon calcitonin (sct) from proliposomes containing bile salts. J Control Release 106:298–308.
  • Srisuk P, Thongnopnua P, Raktanonchai U, Kanokpanont S. (2012). Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm 427:426–34.
  • Tantisripreecha C, Jaturanpinyo M, Panyarachun B, Sarisuta N. (2012). Development of delayed-release proliposomes tablets for oral protein drug delivery. Drug Dev Ind Pharm 38:718–27.
  • Townsend DM, Tew KD, Tapiero H. (2003). The importance of glutathione in human disease. Biomed Pharmacother 57:145–55.
  • Trapani A, Lopedota A, Franco M, et al. (2010). A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm 75:26–32.
  • Vyas A, Saraf S, Saraf S. (2010). Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: a novel technique for oral delivery. J Incl Phenom Macrocycl Chem 66:251–9.
  • Wu X, Chen H, Wu C, et al. (2018). Inhibition of intrinsic coagulation improves safety and tumor-targeted drug delivery of cationic solid lipid nanoparticles. Biomaterials 156:77–87.
  • Xiao Y-y, Song Y-m, Chen Z-p, Ping Q-n. (2006). Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm 319:162–8.
  • Yang ZL, Liu JL, Gao JH, et al. (2015). Chitosan coated vancomycin hydrochloride liposomes: characterizations and evaluation. Int J Pharm 495:508–15.
  • Yousefi A, Esmaeili F, Rahimian S, et al. (2009). Preparation and in vitro evaluation of a pegylated nano-liposomal formulation containing docetaxel. Sci Pharm 77:453–64.
  • Zeevalk GD, Bernard LP, Guilford F. (2010). Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells. Neurochem Res 35:1575–87.
  • Zhang C, Zhou Z, Zhi X, et al. (2015a). Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1. Theranostics 5:134.
  • Zhang Z, Bu H, Gao Z, et al. (2010). The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm 394:147–53.
  • Zheng B, Teng L, Xing G, et al. (2015). Proliposomes containing a bile salt for oral delivery of ginkgo biloba extract: formulation optimization, characterization, oral bioavailability and tissue distribution in rats. Eur J Pharm Sci 77:254–64.
  • Zhang Y, Zhang K, Guo T, et al. (2015b). Transdermal baicalin delivery using diethylene glycol monoethyl ether-mediated cubic phase gel. Int J Pharm 479:219–26.