2,392
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Intranasal administration of erythropoietin rescues the photoreceptors in degenerative retina: a noninvasive method to deliver drugs to the eye

, , , , , , & show all
Pages 78-88 | Received 25 Oct 2018, Accepted 03 Dec 2018, Published online: 11 Feb 2019

References

  • Ansenberger-Fricano K, Ganini D, Mao M, et al. (2013). The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 54:116–24.
  • Balasubramanian V, Sterling P. (2009). Receptive fields and functional architecture in the retina. J Physiol (Lond) 587:2753–67.
  • Busch S, Kannt A, Kolibabka M, et al. (2014). Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration. PLoS One 9:e102013.
  • Capsoni S, Covaceuszach S, Ugolini G, et al. (2009). Delivery of NGF to the brain: intranasal versus ocular administration in anti-NGF transgenic mice. JAD 16:371–88.
  • Chen YY, Liu SL, Hu DP, et al. (2014). N -methyl- N -nitrosourea-induced retinal degeneration in mice. Exp Eye Res 121:102–13.
  • Colella P, Iodice C, Di Vicino U, et al. (2011). Non-erythropoietic erythropoietin derivatives protect from light-induced and genetic photoreceptor degeneration. Hum Mol Genet 20:2251–62.
  • Cronin T, Léveillard T, Sahel JA. (2007). Retinal degenerations: from cell signaling to cell therapy; pre-clinical and clinical issues. Curr Gene Ther 7:121–9.
  • Curcio CA, Packer O, Kalina RE. (1987). A whole mount method for sequential analysis of photoreceptor and ganglion cell topography in a single retina. Vision Res 27:9–15.
  • De Rosa R, Garcia AA, Braschi C, et al. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 102:3811–6.
  • Fangueiro JF, Veiga F, Silva AM, et al. (2016). Ocular drug delivery - new strategies for targeting anterior and posterior segments of the eye. Curr Pharm Des 22:1135–46.
  • Farmer EE, Davoine C. (2007). Reactive electrophile species. Curr Opin Plant Biol 10:380–6.
  • Fletcher L, Kohli S, Sprague SM, et al. (2009). Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg 111:164–70.
  • Frey IIWH, Liu J, Chen X, et al. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 4:87–92.
  • Garcia-Rodriguez JC, Sosa-Teste I. (2009). The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acuteischemic stroke in humans. Sci World J 9:970–81.
  • Genc S, Zadeoglulari Z, Oner MG, et,al. (2011). Intranasal erythropoietin therapy in nervous system disorders. Expert Opin Drug Deliv 8:19–32.
  • Guo C, Li M, Qi X, et al. (2016). Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep 6:29753.
  • Hartong DT, Berson EL, Dryja TP. (2006). Retinitis pigmentosa. Lancet 368:1795–809.
  • Illum L. (2002). Nasal drug delivery: new developments and strategies. Drug Discov Today 7:1184–9.
  • Johnson NJ, Hanson LR, Frey WH. (2010). Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 7:884–93.
  • Kinoshita J, Iwata N, Maejima T, et al. (2015). N-Methyl-N-Nitrosourea-induced acute alteration of retinal function and morphology in monkeys. Invest Ophthalmol Vis Sci 56:7146–58.
  • Kretschmer F, Sajgo S, Kretschmer V, Badea TC. (2015). A system to measure the Optokinetic and Optomotor response in mice. J Neurosci Methods 256:91–105.
  • Liu XF, Fawcett JR, Thorne RG, et al. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187:91–7.
  • Maiese K. (2016). Regeneration in the nervous system with erythropoietin. Front Biosci 21:561–96.
  • Meira LB, Moroski-Erkul CA, Green SL, et al. (2009). Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice. PNAS 106:888–93.
  • Merelli A, Caltana L, Lazarowski A, et al. (2011). Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia. Drug Metabol Drug Interact 26:65–9.
  • Moreno ML, Mérida S, Bo sch-Morell F, et al. (2018). Autophagy dysfunction and oxidativestress, two related mechanisms implicated in retinitis pigmentosa. Front Physiol 9:1008.
  • Neveling K, den Hollander AI, Cremers FP, et al. (2013). Identification and analysis of inherited retinal disease genes. Methods Mol Biol 935:3–23.
  • Osikov MV, Telesheva LF, Ageev YI. (2015). Effect of erythropoietin on lymphocytes apoptosis in experimental chronic renal failure. Bull Exp Biol Med 159:348–50.
  • Pietrowsky R, Strüben C, Mölle M, et al. (1996). Brain potential changes after intranasal vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 39:332–40.
  • Rex TS, Allocca M, Domenici L, et al. (2004). Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. Mol Ther 10:855–61.
  • Robert T, Blanc R, Smajda S, et al. (2016). Endovascular treatment of cribriform plate dural arteriovenous fistulas: technical difficulties and complications avoidance. J NeuroIntervent Surg 8:954–8.
  • Souzeau E, Thompson JA, McLaren TL, et al. (2018). Maternal uniparental isodisomy of chromosome 6 unmasks a novel variant in TULP1 in a patient with early onset retinal dystrophy. Mol Vis 24:478–84.
  • Takahashi Y, Kakizaki H, Nakano T, et al. (2010). The ethmoidal sinus roof: anatomical relationships with the intracranial cavity. Ophthalmic Plast Reconstr Surg 26:372–4.
  • Tao Y, Chen T, Fang W, et al. (2015). The temporal topography of the N-Methyl- N-nitrosourea induced photoreceptor degeneration in mouse retina. Sci Rep 5:18612.
  • Tao Y, Chen T, Liu B, et al. (2015). The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina. Toxicol Appl Pharmacol 286:44–52.
  • Tao Y, Ma Z, Liu B, et al. (2018). Hemin supports the survival of photoreceptors injured by N-Methyl-N-nitrosourea: The contributory role of neuroglobin in photoreceptor degeneration. Brain Res 1678:47–55.
  • Thorne RG, Emory CR, Ala TA, et al. (1995). Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692:278–83.
  • Thorne RG, Pronk GJ, Padmanabhan V, et al. (2004). Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–96.
  • Thrimawithana TR, Young S, Bunt CR, et al. (2011). Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–7.
  • White DV, Sincoff EH, Abdulrauf SI. (2005). Anterior ethmoidal artery: microsurgical anatomy and technical considerations. Neurosurgery 56:406–10.
  • Wiessner C, Allegrini PR, Ekatodramis D, et al. (2001). Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab 21:857–64.
  • Yang JP, Liu HJ, Cheng SM, et al. (2009). Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett 449:108–11.
  • Yoshizawa K, Yang J, Senzaki H, et al. (2000). Caspase-3 inhibitor rescues N -methyl- N -nitrosourea-induced retinal degeneration in Sprague-Dawley rats. Exp Eye Res 71:629–35.