3,487
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet

, , , , , & ORCID Icon show all
Pages 120-128 | Received 01 Nov 2018, Accepted 17 Dec 2018, Published online: 23 Feb 2019

References

  • Akbar NS, Tripathi D, Bég OA. (2017). MHD convective heat transfer of nanofluids through a flexible tube with buoyancy: a study of nano-particle shape effects. Adv Powder Technol 28:453–62.
  • Ally J, Martin B, Khamesee MB, et al. (2005). Magnetic targeting of aerosol particles for cancer therapy. J Magn Magn Mater 293:442–9.
  • Babu A, Templeton AK, Munshi A, Ramesh R. (2013). Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater 2013:1.
  • Bar J, Herbst RS, Onn A. (2009). Targeted drug delivery strategies to treat lung metastasis. Expert Opin Drug Deliv 6:1003–16.
  • Barisam M, Shams M. (2016). The effect of red blood cell motion and deformation on nanoparticle delivery to tumor. Adv Powder Technol 27:1360–6.
  • Bauer K, Brücker C. (2015). The influence of airway tree geometry and ventilation frequency on airflow distribution. J Biomech Eng 137:081001.
  • Chen X, Zhong W, Sun B, et al. (2012). Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD–DPM approach. Powder Technol 217:252–60.
  • Dahmani C, Gotz S, Weyh T, et al. 2009. Respiration triggered magnetic drug targeting in the lung. In: Annual International Conference of the IEEE; Piscataway (NJ): Engineering in Medicine and Biology Society, 2009 (EMBC 2009), 5440–3.
  • Dames P, Gleich B, Flemmer A, et al. (2007). Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechol 2:495.
  • Dikanskii YI. (1998). Magnetosensitive aerosols and prospects of their application. Magnetohydrodynamics 34:212–15.
  • Feng Y, Kleinstreuer C. (2014). Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J Aerosol Sci 71:1–15.
  • Gao Y, Jian Y, Zhang L, Huang J. (2007). Magnetophoresis of nonmagnetic particles in ferrofluids. J Phys Chem C 111:10785–91.
  • Garon EB, Rizvi NA, Hui R, et al. (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–28.
  • Gridelli C, Rossi A, Carbone DP, et al. (2015). Non-small-cell lung cancer. Nat Rev Dis Primers 1:15009.
  • Hasenpusch G, Geiger J, Wagner K, et al. (2012). Magnetized aerosols comprising superparamagnetic iron oxide nanoparticles improve targeted drug and gene delivery to the lung. Pharm Res 29:1308–18.
  • He Y, Bayly AE, Hassanpour A. (2018). Coupling CFD-DEM with dynamic meshing: a new approach for fluid-structure interaction in particle-fluid flows. Powder Technol 325:620–31.
  • Janke T, Schwarze R, Bauer K. (2017). Measuring three-dimensional flow structures in the conductive airways using 3D-PTV. Exp Fluids 58:133.
  • Kalemkerian GP. (2015). Small cell lung cancer. Semin Respir Crit Care Med 783–96.
  • Kamali R, Manshadi MKD, Mansoorifar A. (2016). Numerical analysis of non Newtonian fluid flow in a low voltage cascade electroosmotic micropump. Microsyst Technol 22:2901–7.
  • Kleinstreuer C, Zhang Z. (2003). Targeted drug aeroso deposition analysis for a four-generation lung airway model with hemispherical tumors. J Biomech Eng 125:197–206.
  • Lee SH, Choi WJ, Sung SW, et al. (2011). Endoscopic cryotherapy of lung and bronchial tumors: a systematic review. Korean J Intern Med 26:137.
  • Liu J, Huang Y, Kumar A, et al. (2014). pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710.
  • Liu J, Li N, Li L, et al. (2013). Local hyperthermia for esophageal cancer in a rabbit tumor model: magnetic stent hyperthermia versus magnetic fluid hyperthermia. Oncol Lett 6:1550–8.
  • Loth E. (2008). Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–53.
  • Lunnoo T, Puangmali T. (2015). Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: a computer simulation for magnetic drug targeting. Nanoscale Res Lett 10:426.
  • Luo H, Liu Y, Yang X. (2007). Particle deposition in obstructed airways. J Biomech 40:3096–104.
  • Magnusson MK, Baldursson O, Gudjonsson T. 2011. Lung epithelial stem cells. Stem cells & regenerative medicine. Berlin (Germany): Springer, 227–41.
  • Manshadi MD, Mohammadi M, Sanati-Nezhad A. (2018a). Investigation of non-Newtonian blood effects on magnetic drug delivery for chemotherapy applications in an artery vessel. Anal Comput Theor Chem Lett 1:8–14.
  • Manshadi MD, Mohammadi M, Sanati-Nezhad A. (2018b). Magnetic drug delivery in arterial flow for atherosclerosis therapy. Anal Comput Theor Chem Lett 1:1–7.
  • Manshadi MK, Saadat M, Mohammadi M, et al. (2018c). Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug Deliv 25:1963–73.
  • Mathur G, Nain S, Sharma PK. (2015). Cancer: an overview. Acad J Cancer Res 8:01–09.
  • Miguel AF. (2017). Penetration of inhaled aerosols in the bronchial tree. Med Eng Phys 44:25–31.
  • Modarres HP, Janmaleki M, Novin M, et al. (2018). In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 273:108–30.
  • Ostrovski Y, Hofemeier P, Sznitman J. (2016). Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int J Nanomed 11:3385.
  • Pastorino F, Brignole C, Di Paolo D, et al. (2006). Targeting liposomal chemotherapy via both tumor cell–specific and tumor vasculature–specific ligands potentiates therapeutic efficacy. Cancer Res 66:10073–82.
  • Polyak B, Friedman G. (2009). Magnetic targeting for site-specific drug delivery: applications and clinical potential. Exp Opin Drug Deliv 6:53–70.
  • Pondman KM, Bunt ND, Maijenburg AW, et al. (2015). Magnetic drug delivery with FePd nanowires. J Magn Magn Mater 380:299–306.
  • Pourmehran O, Gorji TB, Gorji-Bandpy M. (2016). Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech Model Mechanobiol 15:1355–74.
  • Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Gorji T. (2015). Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J Magn Magn Mater 393:380–93.
  • Price DN, Stromberg LR, Kunda NK, Muttil P. (2017). In vivo pulmonary delivery and magnetic-targeting of dry powder nano-in-microparticles. Mol Pharm 14:4741–50.
  • International Commission on Non-Ionizing Radiation Protection (ICON-IR). (2009). Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–14.
  • Qin X, Yu S, Zhou L, et al. (2017). Cisplatin-resistant lung cancer cell–derived exosomes increase cisplatin resistance of recipient cells in exosomal mir-100–5p-dependent manner. Int J Nanomed 12:3721.
  • Rafiemanesh H, Mehtarpour M, Khani F, et al. (2016). Epidemiology, incidence and mortality of lung cancer and their relationship with the development index in the world. J Thorac Dis 8:1094.
  • Ren S, Shi Y, Cai M, Xu W. (2017). Influence of secretion on airflow dynamics of mechanical ventilated respiratory system. IEEE/ACM Trans Comput Biol Bioinform 15:1660–68.
  • Russo F, Boghi A, Gori F. (2018). Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract. J Magn Magn Mater 451:554–64.
  • Sawyers C. (2004). Targeted cancer therapy. Nature 432:294–7.
  • Shamsi M, Saghafian M, Dejam M, Sanati-Nezhad A. (2018a). Mathematical modeling of the function of Warburg effect in tumor microenvironment. Sci Rep 8:8903.
  • Shamsi M, Sedaghatkish A, Dejam M, et al. (2018b). Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv 25:846–61.
  • Shapiro B, Kulkarni S, Nacev A, et al. (2015). Open challenges in magnetic drug targeting. Wires Nanomed Nanobiotechnol 7:446–57.
  • Siegel R, Ma J, Zou Z, Jemal A. (2014). Cancer statistics, 2014. CA Cancer J Clin 64:9–29.
  • Siegel RL, Miller KD, Jemal A. (2016). Cancer statistics, 2016. CA Cancer J Clin 66:7–30.
  • Soleimani S, Shamsi M, Ghazani MA, et al. (2018). Translational models of tumor angiogenesis: a nexus of in silico and in vitro models. Biotechnol Adv 36:880–93.
  • Stocke NA, Meenach SA, Arnold SM, et al. (2015). Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm 479:320–8.
  • Sun T, Zhang Y, Power C, et al. (2017). Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci USA 114:E10281–90.
  • Tena AF, Fernández J, Álvarez E, et al. (2017). Design of a numerical model of lung by means of a special boundary condition in the truncated branches. Int J Num Methods Biomed Eng 33:e2830.
  • Unterweger H, Tietze R, Janko C, et al. (2014). Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. Int J Nanomed 9:3659.
  • Verma NK, Crosbie-Staunton K, Satti A, et al. (2013). Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11:1.
  • Weibel ER. 1963. Introduction. In: Morphometry of the human lung. Berlin (Germany): Springer, 1–4.
  • Xi J, Kim J, Si XA, et al. (2015). CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: towards non-invasive diagnosis and treatment of respiratory obstructive diseases. Theranostics 5:443.
  • Xie Y, Longest P, Xu YH, et al. (2010a). In vitro and in vivo lung deposition of coated magnetic aerosol particles. J Pharm Sci 99:4658–68.
  • Xie Y, Zeng P, Siegel RA, et al. (2010b). Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm Res 27:855–65.
  • Zhang Z, Kleinstreuer C, Donohue J, Kim C. (2005). Comparison of micro-and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–33.