2,715
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells

, , , , , , , & show all
Pages 281-289 | Received 16 Jan 2019, Accepted 04 Feb 2019, Published online: 16 Mar 2019

References

  • Arafat K, Iratni R, Takahashi T, et al. (2013). Inhibitory effects of salinomycin on cell survival, colony growth, migration, and invasion of human non-small cell lung cancer A549 and LNM35: involvement of NAG-1. PloS One 8:669–77.
  • Dallas NA, Xia L, Fan F, et al. (2009). Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition . Cancer Res 69:1951–7.
  • Chen DQ, Yu HY, Sun KX, et al. (2014). Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Deliv 21:258–64.
  • Ettinger DS, Wood DE, Aisner DL, et al. (2017). Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:504–35.
  • Francis PA, Kris MG, Rigas JR, et al. (1995). Paclitaxel (Taxol) and docetaxel (Taxotere): active hemotherapeutic agents in lung cancer. Lung Cancer 12:S163–S72.
  • Fu Q, Hargrove D, Lu X. (2016). Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine 12:1951–9.
  • Gelderblom H, Verweij J, Nooter K, et al. (2001). The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–8.
  • Giordano G, Pancione M, Olivieri N, et al. (2017). Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions. Wjg 23:5875–86.
  • Guo ZM, Li WQ, Yuan Y, et al. (2018). Improvement of chemosensitivity and inhibition of migration via targeting tumor epithelial-to-mesenchymal transition cells by ADH-1-modified liposomes. Drug Deliv 25:112–21.
  • Gupta PB, Onder TT, Jiang G, et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–59.
  • Hájek R. (1996). Paclitaxel (Taxol). Cas Lek Cesk 135:393–6.
  • Han CY, Li Y, Sun MS, et al. (2014). Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR overexpressing tumor in vivo. Artif Cells Nanomed Biotechnol 42:161–6.
  • Han CY, Yue LL, Tai LY, et al. (2013). A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro. Int J Nanomedicine 8:1541–9.
  • Heery R, Finn SP, Cuffe S, et al. (2017). Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel) 29:1–48.
  • Larzabal L, El-Nikhely N, Redrado M, et al. (2013). Differential effects of drugs targeting cancer stem cell (CSC) and non-CSC populations on lung primary tumors and metastasis. PLoS One 8:e79798.
  • Li Y, Fang JJ, Wu SM, et al. (2010). Identification and quantification of salinomycin in intoxicated human plasma by liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem 398:955–61.
  • Liao HH, Zhao XX, Qu JK, et al. (2015). Matrine suppresses invasion and metastasis of NCI-H1299 cells by enhancing microRNA-133a expression. Int J Clin Exp Med 8:10714–22.
  • Mao YS, Yang D, He J, et al. (2016). Epidemiology of lung cancer. Surg Oncol Clin N Am 25:439–45.
  • Naujokat C, Steinhart R. (2012). Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012:950658.
  • Pandey V, Gajbhiye KR, Soni V. (2015). Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma. Drug Deliv 22:199–205.
  • Shen CX, Chen F, Wang HG, et al. (2018). Gene downregulates telomerase and inhibits proliferation of CD133+ cancer stem cells isolated from a nasopharyngeal carcinoma cell line by regulating Trfs and Mad1/C-Myc/p53 pathways. Cell Physiol Biochem 9:282–94.
  • Shin JY, Yang Y, Heo P, et al. (2012). pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. Int J Nanomedicine 7:2805–16.
  • Siegel RL, Miller KD, Jemal A. (2018). Cancer statistics, 2018. CA Cancer J Clin 68:7–30.
  • Sparreboom A, van Zuylen L, Brouwer E, et al. (1999). Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59:1454–7.
  • Story P, Doube A. (2004). A case of human poisoning by salinomycin, an agricultural antibiotic. N Z Med J 117:U799.
  • Sun MS, Zhu ZH, Wang HX, et al. (2018). Polyarginine and PEG-AEYLR comodifie nanostructured lipid carrier: 10mol% uncleavable PEG- AEYLR showed no shielding effect to polyarginine in vitro while maintaining good tumor targeting in vivo. Artif Cells Nanomed Biotechnol 46:284–92.
  • Tian PG, Zhou CP, Zhang C, et al. (2011). Selection and identification of specific-binding peptides for cancer stem cell surface marker CD133. J South Med Univ 31:761–6.
  • Torre LA, Siegel RL, Jemal A. (2016). Lung cancer statistics. Adv Exp Med Biol 893:1–9.
  • van Zuylen L, Verweij J, Sparreboom A. (2001). Role of formulation vehicles in taxane pharmacology. Invest New Drugs 19:125–41.
  • Wang J, Chen SH, Xu SQ, et al. (2012). In vivo induction of apoptosis by fucoxanthin, a marine carotenoid, associated with down-regulating STAT3/EGFR signaling in sarcoma 180 (S180) xenografts-bearing mice. Mar Drugs 10:2055–68.
  • Werner ME, Cummings ND, Sethi M, et al. (2013). Preclinical evaluation of genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 86:463–8.
  • Zhang XG, Wang HC, Liu P, et al. (2009). Diagnosis and treatment of salinomycin poisoning:analysis of a case of collective food-borne poisoning with 14 patients. China J Emerg Resustr Disaster Med 4:10–2.
  • Zhang ZR, Wang XY, Li BB, et al. (2018). Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations. Drug Deliv 225:166–77.