2,660
Views
28
CrossRef citations to date
0
Altmetric
Research Article

A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 404-415 | Received 27 Dec 2018, Accepted 25 Feb 2019, Published online: 31 Mar 2019

References

  • Ansaloni L, Coccolini F, Morosi L, et al. (2015). Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer 112:306–12.
  • Au J, Guo P, Gao Y, et al. (2014). Multiscale tumor spatiokinetic model for intraperitoneal therapy. Aaps J 16:424–39.
  • Ballester M, Zisserman A, Brady M. (2002). Estimation of the partial volume effect in MRI. Med Image Anal 6:389–405.
  • Barnes SL, Whisenant JG, Loveless ME, Yankeelov TE. (2012). Practical dynamic contrast enhanced MRI in small animal models of cancer: data acquisition, data analysis, and interpretation. Pharmaceutics 4:442–78.
  • Baxter L, Jain R. (1989). Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Research 37:77–104.
  • Baxter LT, Jain RK. (1990). Transport of fluid and macromolecules in tumors II. Role of heterogeneous perfusion and lymphatics. Microvasc Res 40:246–63.
  • Bhandari A, Bansal A, Singh A, Sinha N. (2017). Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. J Biomech 59:80–9.
  • Bhandari A, Bansal A, Jain R, Singh A, Sinha N. (2018). Effect of tumor volume on drug delivery in heterogeneous vasculature of human brain tumors. ASME J of Medical Diagnostics.doi:https://doi.org/10.1115/1.4042195.
  • Bird R, Stewart W, Lightfoot E. (2007). Transport phenomena. Revised 2nd ed. New York: John Wiley & Sons. ISBN 978-0-470-11539-8
  • Boucher Y, Jain RK. (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumours: implications for vascular collapse. Cancer Research 52:5110–14.
  • Cho H, Ackerstaff E, Carlin S, et al. (2009). Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia (New York, N.Y.) 11:247–59. 2p following 259.
  • Colin P, De Smet L, Vervaet C, et al. (2014). A model based analysis of IPEC dosing of paclitaxel in rats. Pharm Res 31:2876–86.
  • De Vlieghere E, Carlier C, Ceelen W, et al. (2016). Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data Brief 6:542–9.
  • Dedrick RL, Myers CE, Bungay PM, DeVita VT. (1978). Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep 62:1–11.
  • El-Kareh A, Secomb T. (2004). A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia 6:117–27.
  • El-Kareh AW, Secomb TW. (2003). A mathematical model for cisplatin cellular pharmacodynamics. Neoplasia 5:161–9.
  • Flessner M, Dedrick R, Schultz J. (1985). A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol 248:413–24.
  • Flessner MF. (2005). The transport barrier in intraperitoneal therapy. Am J Physiol Ren Physiol 288:433–42.
  • Goodman MD, McPartland S, Detelich D, Saif MW. (2016). Chemotherapy for intraperitoneal use: a review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. J Gastrointest Oncol 7:45–57.
  • Gremonprez F, Descamps B, Izmer A, et al. (2015). Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget 6:29889–900.
  • Helmlinger G, Netti PA, Lichtenbeld HC, et al. (1997). Solid stress inhibits the growth of multicellular tumour spheroids. Nat Biotechnol 15:778–83.
  • Kim M, Gillies R, Rejniak K. (2013). Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 3:278.
  • Los G, Mutsaers P, Lenglet WJ, et al. (1990). Platinum distribution in intraperitoneal tumors after intraperitoneal cisplatin treatment. Cancer Chemother Pharmacol 25:389–94.
  • Magdoom K, Pishko G, Kim J, Sarntinoranont M. (2012). Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor. J Biomech Eng 134:091004.
  • Miyagi Y, Fujiwara K, Kigawa J, et al. (2005). Intraperitoneal carboplatin infusion may be a pharmacologically more reasonable route than intravenous administration as a systemic chemotherapy. A comparative pharmacokinetic analysis of platinum using a new mathematical model after intraperitoneal vs. intravenous infusion of carboplatin–a Sankai Gynecology Study Group (SGSG) study. Gynecol Oncol 99:591–6.
  • Nia HT, Liu H, Seano G, et al. (2016). Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1:0004.
  • Pishko G, Astary G, Mareci T, Sarntinoranont M. (2011). Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng 39:2360–73.
  • Royer B, Kalbacher E, Onteniente S, et al. (2012). Intraperitoneal clearance as a potential biomarker of cisplatin after intraperitoneal perioperative chemotherapy: a population pharmacokinetic study. Br J Cancer 106:460–7.
  • Shah D, Shin B, Veith J, et al. (2009). Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy. J Pharmacol Exp Ther 329:580–91.
  • Stachowska-Pietka J, Waniewsk i. J, Flessner M, Lindholm B. (2012). Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. Am J Physiol Ren Physiol 302:1331–41.
  • Steuperaert M, Debbaut C, Segers P, Ceelen W. (2017). Modelling drug transport during intraperitoneal chemotherapy. Pleura Peritoneum 2:73–83.
  • Steuperaert M, Falvo D’Urso Labate G, Debbaut C, et al. (2017). Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Deliv 24:491–501.
  • Stylianopoulos T, Martin JD, Chauhan VP, et al. (2012). Causes, consequences, and remedies for growth-induced solid stress in murine and human tumours. Proc Natl Acad Sci 109:15101–8.
  • Stylianopoulos T. (2017). The solid mechanics of cancer and strategies for improved therapy. Trans Asme J Biomech Eng 139:021004.
  • Tofts P, Parker G. (2013). DCE-MRI: acquisition and analysis techniques. In P. Barker, X. Golay, & G. Zaharchuk, eds. Clinical perfusion MRI: techniques and applications. Cambridge: Cambridge University Press, 58–74.
  • Winner K, Steinkamp M, Lee R, et al. (2016). Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Res 76:1320–34.
  • Zhan W, Gedroyc W, Xu X. (2014). Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. J Phys D: Appl Phys 47:475401.
  • Zhao J, Salmon H, Sarntinoranont M. (2007). Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–36.
  • Zhu XP, Li KL, Kamaly-Asl ID, et al. (2000). Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–85.