3,671
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization

, , , , , , , & show all
Pages 522-531 | Received 27 Feb 2019, Accepted 16 Apr 2019, Published online: 15 May 2019

References

  • Agrahari V, Agrahari V, Hung WT, et al. (2016). Composite nanoformulation therapeutics for long term ocular delivery of macromolecules. Mol Pharm 13:2912–22.
  • Akhurst RJ. (2004). Mouse strain-dependent heterogeneity of resting limbal vasculature. Invest Ophthalmol Vis Sci 45:441–7.
  • Ashaben P. (2013). Ocular drug delivery systems: an overview. World J Pharmacol 2:47–64.
  • Aznar N, Patel A, Rohena CC, et al. (2016). AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. Elife 5:e20795.
  • Bainbridge J. (2007). The macrophage is key to choroidal neovascularization in age-related macular degeneration. Exp Rev Ophthalmol 2:981–6.
  • Bakri SJ, Snyder MR, Reid JM, et al. (2007). Pharmacokinetics of intravitreal bevacizumab (avastin). Ophthalmology 114:855–9.
  • Chang JH, Gabison EE, Kato T, Azar DT. (2001). Corneal neovascularization. Curr Opin Ophthalmol 12:242–9.
  • Chang JH, Garg NK, Lunde E, et al. (2012). Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 57:415–29.
  • Chen Y, Li Y, Shen W, et al. (2016). Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep 6:31593.
  • Cursiefen C, Masli S, Ng TF, et al. (2004). Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 45:1117–224.
  • Evans JM, Donnelly LA, Emslie-Smith AM, et al. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–5.
  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. (2010). Ocular drug delivery. AAPS J 12:348–60.
  • Gaucher G, Marchessault RH, Leroux JC. (2010). Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Rel 143:2–12.
  • Gong C, Shi S, Wu L, et al. (2009). Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive pcl-peg-pcl hydrogel. part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater 5:3358–70.
  • Gordon S, Hamann J, Lin HH, Stacey M. (2011). F4/80 and the related adhesion-GPCRs. Eur J Immunol 41:2472–6.
  • Holland EJ, Mccarthy M, Holland S. (2007). The ocular penetration of levofloxacin 1.5% and gatifloxacin 0.3% ophthalmic solutions in subjects undergoing corneal transplant surgery. Curr Med Res Opin 23:2955–60.
  • Islan GA, Tornello PC, Abraham GA, et al. (2016). Smart lipid nanoparticles containing levofloxacin and dnase for lung delivery. Design and characterization. Coll Surf B Biointerf 143:168–76.
  • Jain RK. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–9.
  • Joe SG, Yoon YH, Choi JA, Koh JY. (2015). Anti-angiogenic effect of metformin in mouse oxygen-induced retinopathy is mediated by reducing levels of the vascular endothelial growth factor receptor flk-1. PLoS ONE 10:e0119708.
  • Kale S, Raja R, Thorat D, et al. (2014). Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene 33:2295.
  • Kimura H, Ogura Y. (2001). Biodegradable polymers for ocular drug delivery. Ophthalmologica 215:143–55.
  • Lei K, Chen Y, Wang J, et al. (2017). Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 55:396–409.
  • Li X, Zhou Q, Hanus J, et al. (2013). Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor saha in a corneal alkali-burn injury model. Mol Pharm 10:307–18.
  • Liow SS, Dou Q, Kai D, et al. (2016). Thermogels: in situ gelling biomaterial. ACS Biomater Sci Eng 2:295–316.
  • Liu G, Zhang W, Xiao Y, Lu P. (2015). Critical role of IP-10 on reducing experimental corneal neovascularization. Curr Eye Res 40:891–901.
  • Liu S, Jones L, Gu FX. (2012). Nanomaterials for ocular drug delivery. Macromol Biosci 12:608–20.
  • Liu Y, Chen X, Li S, et al. (2017). Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy. ACS Appl Mater Interf 9:23428–40.
  • Loh XJ, Chee PL, Owh C. (2018). Biodegradable thermogelling polymers. Small Methods 1800313:1–15.
  • Lu P, Li L, Liu G, et al. (2009). Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci 50:4761–8.
  • Luan J, Zhang Z, Shen W, et al. (2018). Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl Mater Interfaces 10:30235–46.
  • Luo Z, Jin L, Xu L, et al. (2016). Thermosensitive peg-pcl-peg (pece) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv 23:63.
  • Mwaikambo BR. (2006). Activation of cd36 inhibits and induces regression of inflammatory corneal neovascularization. IOVS 47:4356–64.
  • Oh EJ, Park K, Choi JS, et al. (2009). Synthesis, characterization, and preliminary assessment of anti-flt1 peptide-hyaluronate conjugate for the treatment of corneal neovascularization. Biomaterials 30:6026–34.
  • Papathanassiou M, Theodossiadis PG, Liarakos VS, et al. (2008). Inhibition of corneal neovascularization by subconjunctival bevacizumab in an animal model. AJO 145:424–31.
  • Qazi Y, Maddula S, Ambati BK. (2009). Mediators of ocular angiogenesis. J Genet 88:495–515.
  • Rogers MS, Birsner AE, D’Amato RJ. (2007). The mouse cornea micropocket angiogenesis assay. Nat Protoc 2:2545–50.
  • Roshandel D, Eslani M, Baradaran-Rafii A, et al. (2018). Current and emerging therapies for corneal neovascularization. Ocular Surf 16:398–414.
  • Shang H, Chen X, Liu Y, et al. (2017). Cucurbit [7]-assisted sustained release of human calcitonin from thermosensitive block copolymer hydrogel. Int J Pharm 527:52–60.
  • Shen W, Chen X, Luan J, et al. (2017). Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl Mater Interfaces 9:40031–46.
  • Soraya H, Esfahanian N, Shakiba Y, et al. (2012). Anti-angiogenic effects of metformin, an AMPK activator, on human umbilical vein endothelial cells and on granulation tissue in rat. IJBMS 15:1202–9.
  • Stynen B, Abd-Rabbo D, Kowarzyk J, et al. (2018). Changes of cell biochemical states are revealed in protein homomeric complex dynamics. Cell 175:1418–29.
  • Sun J, Liu X, Lei Y, et al. (2017). Sustained subconjunctival delivery of cyclosporine a using thermogelling polymers for glaucoma filtration surgery. J Mater Chem B 5:6400–11.
  • Tan BK, Adya R, Chen J, et al. (2009). Metformin decreases angiogenesis via NF-κB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 83:566–74.
  • Tang Q, Wu J, Sun H, et al. (2008). Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohyd Poly 74:215–9.
  • Than A, Liu C, Chang H, et al. (2018). Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun 9:4433.
  • Urtti A. (2006). Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–5.
  • Xie B, Jin L, Luo Z, et al. (2015). An injectable thermosensitive polymeric hydrogel for sustained release of avastin to treat posterior segment disease. Int J Pharm 490:375–83.
  • Yu L, Ding J. (2008). Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–81.
  • Zhang L, Shen W, Luan J, et al. (2015). Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater 23:271–81.