2,361
Views
15
CrossRef citations to date
0
Altmetric
Articles

Development of synthetic high-density lipoprotein-based ApoA-I mimetic peptide-loaded docetaxel as a drug delivery nanocarrier for breast cancer chemotherapy

, , , , , & show all
Pages 708-716 | Received 22 Mar 2019, Accepted 09 May 2019, Published online: 10 Jul 2019

References

  • Amar MJA, Wilissa DS, Scott T, et al. (2010). 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Therap 334:634–41.
  • Cánovas B, Igea A, Sartori AA, et al. (2018). Targeting p38α increases DNA damage, chromosome instability, and the anti-tumoral response to taxanes in breast cancer cells. Cancer Cell 33:1094–110.
  • Cai Z, Zhang H, Wei Y, Cong F. (2017). Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules 18:1677–96.
  • Chang XL, Liu L, Wang N, et al. (2017). The function of HDL and LDL in the maintenance of mouse ovarian steroid balance. Biol Reprod 97:1–8.
  • Cho E, Jung S. (2018). Biotinylated cyclooligosaccharides for paclitaxel solubilization. Molecules 23:90.
  • David SR, Katharina K, Andrea P, et al. (2015). The HDL receptor SR-BI is associated with human prostate cancer progression and plays a possible role in establishing androgen independence. Reprod Biol Endocrinol 13:88.
  • Deng H, Zhang Z. (2018). The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release 290:28–45.
  • Dong Z, Yang J, Guan J, et al. (2018). In vivo tailor-made protein corona of prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomater Sci 6:2360–74.
  • Feliu N, Docter D, Heine M, et al. (2016). In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 45:2440–57.
  • Gu Q, Xing JZ, Huang M, et al. (2013). Nanoformulation of paclitaxel to enhance cancer therapy. J Biomater Appl 28:298–307.
  • Henderson CM, Vaisar T, Hoofnagle AN. (2016). Isolating and quantifying plasma HDL proteins by sequential density gradient ultracentrifugation and targeted proteomics. Methods Mol Biol 1410:105–20.
  • Hugo D, Anne B, Magda T, et al. (2018). Ice induction in DSC experiments with Snomax®. Thermochimica Acta 667:193–206.
  • Jie T, Rui K, Yuan W, et al. (2017). Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomed Nanotechnol Biol Med 13:1869.
  • Johnson R, Sabnis N, Sun X, et al. (2017). SR-B1-targeted nanodelivery of anti-cancer agents: a promising new approach to treat triple-negative breast cancer. Breast Cancer (Dove Med Press) 9:383–92.
  • Joshi N, Shirsath N, Singh A, et al. (2014). Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep 4:7085.
  • Kuai R, Li D, Chen YE, et al. (2016). High-density lipoproteins (HDL) - Nature's multi-functional nanoparticles. ACS Nano 10:3015–41.
  • Lee H, Fonge H, Hoang B, et al. (2010). The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm 7:1195–208.
  • Li W, Peng J, Yang Q, et al. (2018). α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater Sci 6:1201–16.
  • Li X, Tang H, Wang J, et al. (2017). The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer. Breast 32:1–6.
  • Lv Y, Xu C, Zhao X, et al. (2018). Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 12:1519–36.
  • Masayuki Y. (2014). Polymeric micelles as drug carriers: their lights and shadows. J Drug Target 22:576–83.
  • Mathilde T, Philippine F, Mathilde H, et al. (2015). Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr 114:347–57.
  • Reza M, Sukhdeep J, Ern LS, et al. (2018). Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 288:239–63.
  • Rink JS, Sun W, Misener S, et al. (2018). Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular diseases. ACS Appl Mater Interfaces 10:6904–16.
  • Rui K, Ochyl LJ, Bahjat KS, et al. (2017). Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature Mater 16:489–96.
  • Shah VM, Nguyen DX, Alfatease A, et al. (2017). Characterization of pegylated and non-pegylated liposomal formulation for the delivery of hypoxia activated vinblastine-N-oxide for the treatment of solid tumors. J Control Release 253:37–45.
  • Shuo Y, Damiano MG, Heng Z, et al. (2013). Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Natl Acad Sci USA 110(7):2511–6.
  • Song P, Kwon Y, Yea K, et al. (2015). Apolipoprotein a1 increases mitochondrial biogenesis through AMP-activated protein kinase. Cell Signal 27:1873–81.
  • Stoekenbroek RM, Stroes ES, Hovingh GK. (2015). ApoA-I mimetics. Handb Exp Pharmacol 224:631–48.
  • Uehara Y, Chiesa G, Saku K. (2015). High-density lipoprotein-targeted therapy and apolipoprotein A-I mimetic peptides. Circ J 79:2523–8.
  • Wang C, Cheng X, Su Y, et al. (2015). Accelerated blood clearance phenomenon upon cross-administration of PEGylated nanocarriers in beagle dogs. Int J Nanomed 10:3533–45.
  • Wang W, Chen K, Su Y, et al. (2018). Lysosome-independent intracellular drug/gene co-delivery by lipoprotein-derived nanovector for synergistic apoptosis-inducing cancer-targeted therapy. Biomacromolecules 19:438–48.
  • Wen J, Bao Y, Niu Q, et al. (2016). Synthesis, biological evaluation and molecular modeling studies of psammaplin A and its analogs as potent histone deacetylases inhibitors and cytotoxic agents. Bioorg Med Chem Lett 26:4372–6.
  • Xianglan Y, Cuilian D, Karin F, et al. (2011). 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. J Immunol 186:576.
  • Yao Q, Gutierrez DC, Hoang NH, et al. (2017). Efficient co-delivery of paclitaxel and curcumin by novel bottlebrush copolymer-based micelles. Mol Pharm 14:2378–89.
  • Yuan Y, Wen J, Tang J, et al. (2016). Synthetic high-density lipoproteins for delivery of 10-hydroxycamptothecin. Int J Nanomedicine 11:6229–38.
  • Zhang N, Chen H, Liu AY, et al. (2016). Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–91.
  • Zhang S, Sun M, Zhao Y, et al. (2017). Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations. Drug Deliv Transl Res 7:1–12.
  • Zhang X, He F, Xiang K, et al. (2018). CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules 19:883–95.