4,067
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery

, , &
Pages 1092-1103 | Received 11 Sep 2019, Accepted 16 Oct 2019, Published online: 18 Nov 2019

References

  • Abdelghany S, Tekko IA, Vora L, et al. (2019). Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics 11:E308
  • Ali HSM, Hanafy AF, Alqurshi A. (2019). Engineering of solidified glyburide nanocrystals for tablet formulation via loading of carriers: downstream processing, characterization, and bioavailability. Int J Nanomed 14:1893–906.
  • Alomari M, Mohamed FH, Basit AW, Gaisford S. (2015). Personalised dosing: printing a dose of one's own medicine. Int J Pharmaceut 494:568–77.
  • Alshweiat A, Katona G, Csoka I, Ambrus R. (2018). Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci 122:94–104.
  • Anup N, Thakkar S, Misra M. (2018). Formulation of olanzapine nanosuspension based orally disintegrating tablets (ODT); comparative evaluation of lyophilization and electrospraying process as solidification techniques. Adv Powder Technol 29:1913–24.
  • B. Sinha. (2013). Systematical investigation of the cavi-precipitation process to prepare drug nanocrystals. Berlin: Free University of Berlin.
  • Bartos C, Jojart-Laczkovich O, Katona G, et al. (2018). Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. DDDT 12:1567–80.
  • Bi C, Miao XQ, Chow SF, et al. (2017). Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomed-Nanotechnol 13:943–53.
  • Bonhoeffer B, Kwade A, Juhnke M. (2018). Alternative manufacturing concepts for solid oral dosage forms from drug nanosuspensions using fluid dispensing and forced drying technology. J Pharm Sci 107:909–21.
  • Cao YP, Wei ZH, Li MM, et al. (2019). Formulation, pharmacokinetic evaluation and cytotoxicity of an enhanced-penetration paclitaxel nanosuspension. CCDT 19:338–47.
  • Cerdeira AM, Mazzotti M, Gander B. (2011). Role of milling parameters and particle stabilization on nanogrinding of drug substances of similar mechanical properties. Chem Eng Technol 34:1427–38.
  • Colombo M, Orthmann S, Bellini M, et al. (2017). Influence of drug brittleness, nanomilling time, and freeze-drying on the crystallinity of poorly water-soluble drugs and its implications for solubility enhancement. AAPS PharmSciTech 18:2437.
  • Corrias F, Schlich M, Sinico C, et al. (2017). Nile red nanosuspensions as investigative model to study the follicular targeting of drug nanocrystals. Int J Pharmaceut 524:1–8.
  • Couillaud BM, Espeau P, Mignet N, Corvis Y. (2019). State of the art of pharmaceutical solid forms: from crystal property issues to nanocrystals formulation. ChemMedChem 14:8–23.
  • Date AA, Halpert G, Babu T, et al. (2018). Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials 185:97–105.
  • Dibaei M, Rouini MR, Sheikholeslami B, et al. (2019). The effect of surface treatment on the brain delivery of curcumin nanosuspension: in vitro and in vivo studies. IJN 14:5477–90.
  • Fontana F, Figueiredo P, Zhang P, et al. (2018). Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 131:3–21.
  • Funahashi I, Kondo K, Ito Y, et al. (2019). Novel contamination-free wet milling technique using ice beads for poorly water-soluble compounds. Int J Pharmaceut 563:413–25.
  • Gajera BY, Shah DA, Dave RH. (2018). Investigating a novel hot melt extrusion-based drying technique to solidify an amorphous nanosuspension using design of experiment methodology. AAPS PharmSciTech 19:3778–90.
  • Gajera BY, Shah DA, Dave RH. (2019). Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int J Pharmaceut 559:348–59.
  • Gao L, Liu GY, Ma JL, et al. (2014). Paclitaxel nanosuspension coated with P-gp inhibitory surfactants: II. Ability to reverse the drug-resistance of H460 human lung cancer cells. Colloid Surface B 117:122–7.
  • George M, Ghosh I. (2013). Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci 48:142–52.
  • Gigliobianco MR, Casadidio C, Censi R, Martino PD. (2018). Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics 10:E134
  • Goel S, Sachdeva M, Agarwal V. (2019). Nanosuspension technology: recent patents on drug delivery and their characterizations. DDF 13:91–104.
  • Gong T, Patel SK, Parniak MA, et al. (2019). Nanocrystal formulation improves vaginal delivery of CSIC for HIV prevention. AAPS PharmSciTech 20:286.
  • Guan J, Zhang YL, Liu QY, et al. (2017). Exploration of alginates as potential stabilizers of nanosuspension. AAPS PharmSciTech 18:3172–81.
  • Guo P, Hsu TM, Zhao YP, et al. (2013). Preparing amorphous hydrophobic drug nanoparticles by nanoporous membrane extrusion. Nanomedicine-Uk 8:333–41.
  • Hagedorn M, Liebich L, Bogershausen A, et al. (2019). Rapid development of API nano-formulations from screening to production combining dual centrifugation and wet agitator bead milling. Int J Pharmaceut 565:187–98.
  • He W, Lu Y, Qi JP, et al. (2013). Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. Int J Pharmaceut 441:269–78.
  • Hollis CP, Weiss HL, Evers BM, et al. (2014). In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharm Res 31:1450–9.
  • Homayouni A, Amini M, Sohrabi M, et al. (2019). Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. Int J Pharm 562:124–34.
  • Jermain SV, Brough C, Williams RO. 3rd, (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int J Pharm 535:379–92.
  • Jog R, Burgess DJ. (2017). Pharmaceutical amorphous nanoparticles. J Pharm Sci 106:39–65.
  • Kathpalia H, Juvekar S, Shidhaye S. (2019). Design and in vitro evaluation of atovaquone nanosuspension prepared by pH based and anti-solvent based precipitation method. Colloid Interfac Sci 29:26–32.
  • Kayaert P, Anne M, Van den Mooter G. (2011). Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads. J Pharm Pharmacol 63:1446–53.
  • Knieke C, Sommer M, Peukert W. (2009). Identifying the apparent and true grinding limit. Powder Technol 195:25–30.
  • Kumar M, Shanthi N, Mahato AK, et al. (2019). Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 5:e01688.
  • Kuroiwa Y, Higashi K, Ueda K, et al. (2018). Nano-scale and molecular-level understanding of wet-milled indomethacin/poloxamer 407 nanosuspension with TEM, suspended-state NMR, and Raman measurements. Int J Pharm 537:30–9.
  • Lai F, Franceschini I, Corrias F, et al. (2015). Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study. Carbohyd Polym 121:217–23.
  • Lai F, Schlich M, Pireddu R, et al. (2015). Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery. CPD 21:6089–103.
  • Li M, Yaragudi N, Afolabi A, et al. (2015). Sub-100 nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci 130:207–20.
  • Li Q, Chen F, Liu Y, et al. (2018). A novel albumin wrapped nanosuspension of meloxicam to improve inflammation-targeting effects. IJN 13:4711–25.
  • Li XA, Anton N, Arpagaus C, et al. (2010). Nanoparticles by spray drying using innovative new technology: the Buchi Nano spray dryer B-90. J Control Release 147:304–10.
  • Lindfors L, Skantze P, Skantze U, et al. (2007). Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir 23:9866–74.
  • Liu M, Hong C, Li G, et al. (2016). The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology 27:395601.
  • Liu Q, Guan J, Sun Z, et al. (2019). Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int J Pharm 569:118562.
  • Liu T, Han M, Tian F, et al. (2018). Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: in vitro and in vivo evaluation. Carbohydr Polym 181:1143–52.
  • Liu T, Muller RH, Moschwitzer JP. (2015). Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension. Expert Opin Drug Del 12:1741–54.
  • Liu T, Muller RH, Moschwitzer JP. (2016). Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS PharmSciTech 18:1683–91
  • Liu T, Muller RH, Moschwitzer JP. (2018). Consideration of the solid state for resveratrol nanocrystal production. Powder Technol 332:63–9.
  • Liu T, Muller RH, Moschwitzer JP. (2018). Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency. Drug Dev Ind Pharm 44:233–42.
  • Liu T, Yao G, Zhang X, et al. (2018). Systematical investigation of different drug nanocrystal technologies to produce fast dissolving meloxicam tablets. AAPS PharmSciTech 19:783–91.
  • Liu T, Yao GL, Liu XT, Yin HP. (2017). Preparation nanocrystals of poorly soluble plant compounds using an ultra-small-scale approach. AAPS PharmSciTech 18:2610–7.
  • Liu XY, Gan H, Hu CR, et al. (2018). Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. IJN 14:289–300.
  • Lu Y, Li Y, Wu W. (2016). Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 6:106–13.
  • Lu Y, Lv Y, Li T. (2019). Hybrid drug nanocrystals. Adv Drug Deliv Rev 143:115.
  • Lu Y, Qi JP, Dong XC, et al. (2017). The in vivo fate of nanocrystals. Drug Discov Today 22:744–50.
  • Barkat MA, Harshita  , Ahmad I, et al. (2017). Nanosuspension-based Aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 18:3274–85.
  • Malamatari M, Somavarapu S, Taylor KMG, Buckton G. (2016). Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders. Expert Opin Drug Del 13:435–50.
  • Malamatari M, Taylor KMG, Malamataris S, et al. (2018). Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discovery Today 23:534–47.
  • McCrudden MTC, Larraneta E, Clark A, et al. (2018). Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release 292:119–29.
  • Miao XQ, Yang WW, Feng T, et al. (2018). Drug nanocrystals for cancer therapy. Wires Nanomed Nanobi 10:e1499.
  • Mohammad IS, Hu H, Yin L, He W. (2019). Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm 562:187–202.
  • Morakul B, Suksiriworapong J, Leanpolchareanchai J, Junyaprasert VB. (2013). Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. Int J Pharmaceut 457:187–96.
  • Mori D, Makwana J, Parmar R, et al. (2016). Formulation, evaluation and optimization of the felodipine nanosuspension to be used for direct compression to tablet for in vitro dissolution enhancement. Pak J Pharm Sci 29:1927–36.
  • Moschwitzer JP. (2013). Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 453:142–56.
  • Muller RH, Keck CM. (2012). Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 80:1–3.
  • Nair A, Khunt D, Misra M. (2019). Application of quality by design for optimization of spray drying process used in drying of Risperidone nanosuspension. Powder Technol 342:156–65.
  • Nguyen DN, Clasen C, Van den Mooter G. (2017). Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. Eur J Pharm Biopharm 113:50–9.
  • Oktay AN, Ilbasmis-Tamer S, Celebi N. (2019). The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol 1–28.
  • Oktay AN, Karakucuk A, Ilbasmis-Tamer S, Celebi N. (2018). Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci 122:254–63.
  • Pang L, Zhang C, Qin J, et al. (2017). A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 24:83–91.
  • Pardeike J, Strohmeier DM, Schrödl N, et al. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharmaceut 420:93–100.
  • Pardhi VP, Verma T, Flora SJS, et al. (2019). Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. CPD 24:5129–46.
  • Parmentier J, Tan EH, Low A, Möschwitzer JP. (2017). Downstream drug product processing of itraconazole nanosuspension: factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharmaceut 524:443–53.
  • Peltonen L, Hirvonen J. (2018). Drug nanocrystals - versatile option for formulation of poorly soluble materials. Int J Pharm 537:73–83.
  • Permana AD, McCrudden MTC, Donnelly RF. (2019). Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: a proof of concept study. Pharmaceutics 11:E346.
  • Pu X, Sun J, Wang Y, et al. (2009). Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Int J Pharm 379:167–73.
  • Qiao H, Chen L, Rui T, et al. (2017). Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-alpha-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. IJN 12:1033–46.
  • Rahim H, Sadiq A, Khan S, et al. (2019). Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro alpha-glucosidase inhibition. IJN 14:6287–96.
  • Romero GB, Keck CM, Muller RH. (2016). Simple low-cost miniaturization approach for pharmaceutical nanocrystals production. Int J Pharm 501:236–44.
  • Salazar J, Ghanem A, Müller RH, Möschwitzer JP. (2012). Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 81:82–90.
  • Salazar J, Heinzerling O, Müller RH, Möschwitzer JP. (2011). Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Int J Pharmaceut 420:395–403.
  • Salazar J, Muller RH, Moschwitzer JP. (2013). Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 49:565–77.
  • Sharma P, Denny WA, Garg S. (2009). Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm 380:40–8.
  • Sharma P, Zujovic ZD, Bowmaker GA, et al. (2011). Evaluation of a crystalline nanosuspension: polymorphism, process induced transformation and in vivo studies. Int J Pharmaceut 408:138–51.
  • Sigfridsson K, Rydberg H, Strimfors M. (2019). Nano- and microcrystals of griseofulvin subcutaneously administered to rats resulted in improved bioavailability and sustained release. Drug Dev Ind Pharm 45:1477.
  • Singh MK, Pooja D, Ravuri HG, et al. (2018). Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine 40:48–54.
  • Sinha B, Muller RH, Moschwitzer JP. (2013). Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453:126–41.
  • Sinha B, Muller RH, Moschwitzer JP. (2013). Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm 458:315–23.
  • Soisuwan S, Teeranachaideekul V, Wongrakpanich A, et al. (2019). Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm 137:68–76.
  • Pailla SR, Talluri S, Rangaraj N, et al. (2019). Intranasal Zotepine Nanosuspension: intended for improved brain distribution in rats. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
  • Staedtke V, Brähler M, Müller A, et al. (2010). In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small 6:96–103.
  • Sullivan SP, Murthy N, Prausnitz MR. (2008). Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–8.
  • Tan S, Wu T, Zhang D, Zhang Z. (2015). Cell or cell membrane-based drug delivery systems. Theranostics 5:863–81.
  • Tuomela A, Hirvonen J, Peltonen L. (2016). Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics 8:16.
  • Ueda K, Iwai T, Sunazuka Y, et al. (2019). Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. Int J Pharmaceut 564:39–47.
  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P. (2008). Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75.
  • Vora LK, Vavia PR, Larraneta E, et al. (2018). Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. J Interdiscip Nanomed 3:89–101.
  • Wang H, Xiao Y, Sang Z, et al. (2019). Development of daidzein nanosuspensions: preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Int J Pharm 566:67–76.
  • Wang T, Qi J, Ding N, et al. (2018). Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int J Pharm 546:10–9.
  • Wang YT, Wang CY, Zhao J, et al. (2017). A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J Colloid Interf Sci 485:91–8.
  • Wei Q, Keck CM, Müller RH. (2018). Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE). Drug Dev Ind Pharm 44:1–12.
  • Xie J, Luo YJ, Liu Y, et al. (2019). Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose-sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin. IJN 14:353–69.
  • Yang H, Kim H, Jung S, et al. (2018). Pharmaceutical strategies for stabilizing drug nanocrystals. CPD 24:2362–74.
  • Yang L, Hong J, Di J, et al. (2017). 10-Hydroxycamptothecin (HCPT) nanosuspensions stabilized by mPEG1000-HCPT conjugate: high stabilizing efficiency and improved antitumor efficacy. IJN 12:3681–95.
  • Ye XY, Patil H, Feng X, et al. (2016). Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech 17:78–88.
  • Zhai X, Lademann J, Keck CM, Müller RH. (2014). Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters. Eur J Pharm Biopharm 88:85–91.
  • Zhao RS, Hollis CP, Zhang H, et al. (2011). Hybrid nanocrystals: achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharmaceutics 8:1985–91.
  • Zhou YX, Fang QY, Niu BY, et al. (2018). Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloid Surface B 172:372–9.
  • Zu YG, Sun W, Zhao XH, et al. (2014). Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Eur J Pharm Sci 53:109–17.