4,899
Views
48
CrossRef citations to date
0
Altmetric
Review

Nanoparticles for antiparasitic drug delivery

, , , , , , & show all
Pages 1206-1221 | Received 30 Sep 2019, Accepted 11 Nov 2019, Published online: 20 Nov 2019

References

  • Abamor ES, Tosyali OA, Bagirova M, et al. (2018). Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment. IET Nanobiotechnol 12:1018–26.
  • Aditya NP, Chimote G, Gunalan K, et al. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol 131:292–9.
  • Afonso A, Hunt P, Cheesman S, et al. (2006). Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Ch 50:480–9.
  • Aggarwal P, Hall JB, McLeland CB, et al. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Revi 61:428–37.
  • Ahmadnia S, Moazeni M, Mohammadi-Samani S, et al. (2013). In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp Parasitol 135:314–9.
  • Ahmed SA, El-Mahallawy HS, Karanis P. (2019). Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts. Parasitol Res 118:2053–63.
  • Anjali K, Singh K, Bharkad GP, et al. (2017). Solid lipid nanoparticles of albendazole for treatment of Toxocara canis infection: in-vivo efficacy studies. Nanoasia 7:80–91.
  • Asthana S, Jaiswal AK, Gupta PK, et al. (2015). Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. J Lipsome Res 89:62–73.
  • Babita S, Utpal J, Jyotirmaya S, et al. (2018). Systematic approach for the formulation and optimization of atorvastatin loaded solid lipid nanoparticles using response surface methodology. Biomed Micodevices 20:53.
  • Balaña-Fouce R, Reguera RM, Cubrı́A JC, et al. (1998). The pharmacology of leishmaniasis. Gen Pharmacol-Vasc S 30:435–43.
  • Bangham AD, Standish MM, Watkins JC. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238.
  • Beshbishy AM, Batiha GE, Yokoyama N, et al. (2019). Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasit Vectors 12:269.
  • Boyd BL. (2007). Complex orthodontic treatment using a TIIIpmtocd for the lnvisalign appliance. J Clin Orthod 41:525–47.
  • Chaudhari MB, Desai PP, Patel PA, et al. (2016). Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res 6:354–64.
  • Chen A, Shi Y, Yan Z, et al. (2015). Dosage form developments of nanosuspension drug delivery system for oral administration route. Curr Pharm Des 21:4355–65.
  • Chen W, He XX, Shi BH, et al. (2013). in vivo distribution and metabolism of silica nanoparticles with different sizes. Chin Sci Bull 58:568–74.
  • Chen XL, Li JC, Huang YZ. (2017). The biodistribution, excretion and potential toxicology of different-sized Pd nanosheets in mice following oral and intraperitoneal administration. Biomater Sci 5:2448–55.
  • Chithrani BD, Chan W. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–50.
  • Conner SD, Schmid SL. (2003). Regulated portals of entry into the cell. Nature 422:37–44.
  • Das S, Chaudhury A. (2011). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps Pharmscitech 12:62–76.
  • de Souza AL, Andreani T, de Oliveira RN, et al. (2014). In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int J Pharm 463:31–7.
  • Desai MP, Labhasetwar V, Amidon GL, et al. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838.
  • Dingler A, Blum RP, Niehus H. (1999). Solid lipid nanoparticles (SLNTM/LipopearlsTM) a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 16:751–67.
  • Dou DD. (2016). Preparation of ivermectin solid lipid nanoparticles and preliminary study on transdermal properties. Artif Cell Nanomed B 46:255–62
  • Dufort S, Sancey L, Coll JL. (2012). Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 64:179–89.
  • Dvoroznakova E, Hrckova G, Boroskova Z, et al. (2004). Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis. Parasitol Int 53:315–25.
  • Dwivedi P, Khatik R, Khandelwal K, et al. (2014). Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm 466:321–7.
  • Esfandiari F, Motazedian MH, Asgari Q, et al. (2019). Paromomycin-loaded mannosylated chitosan nanoparticles: synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop 197:105072.
  • Etewa SE, El-Maaty DAA, Hamza RS, et al. (2018). Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 42:102–13.
  • Fülöp V, Jakab G, Bozó T, et al. (2018). Study on the dissolution improvement of albendazole using reconstitutable dry nanosuspension formulation. Eur J Pharm Sci 123:70–8.
  • Gamboa GV, Palma SD, Lifschitz A, et al. (2016). Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 115:1945–53.
  • Geng Y, Discher DE. (2005). Hydrolytic degradation of poly(ethylene oxide)-\r, block-\r, polycaprolactone worm micelles. J Am Chem Soc 127:12780–1.
  • Gonzalezmartin G, Merino I, Rodriguezcabezas MN. (2011). Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol 50:29–35.
  • Gregoriadis G, Wills EJ, Swain CP, et al. (1974). Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 03:1313–6.
  • Hagras NA, Allam AF, Farag HF, et al. (2019). Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp Parasitol 204:107717.
  • Halder A, Shukla D, Das S, et al. (2018). Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine 110:412–5.
  • Hamori M, Yoshimatsu S, Hukuchi Y, et al. (2014). Preparation and pharmaceutical evaluation of nano-fiber matrix supported drug delivery system using the solvent-based electrospinning method. Int J Pharm 464:243–51.
  • He J, Hou SX, Feng JF, et al. (2005). Effect of particle size on oral absorption of silymarin-loaded solid lipid nanoparticles. Zhongguo Zhong Yao Za Zhi 30:1651–3.
  • He Q, Zhang Z, Gao F, et al. (2011). In vivo study of biodistribution and urinary excretion of silica nanoparticles with different size. Small 7:271–80.
  • Heidari-Kharaji M, Taheri T, Doroud D, et al. (2016). Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol 38:599–608.
  • Heidari-Kharaji M, Taheri T, Doroud D, et al. (2016). Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl Microbiol Biotechnol 100:7051–60.
  • Hirsjärvi S, Dufort S, Gravier J, et al. (2013). Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine 9:375–87.
  • Hönn M, Göz G. (2006). A premolar extraction case using the invisalign system. J Orofac Orthop 67:385–94.
  • Ismail M, Ling L, Du Y, et al. (2018). Liposomes of dimeric artesunate phospholipid: a combination of dimerization and self-assembly to combat malaria. Biomaterials 163:76–87.
  • Jong WHD, Hagens WI, Krystek P, et al. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–9.
  • Kango S, Kalia S, Celli A, et al. (2013). Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 38:1232–61.
  • Kayser O. (2000). Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against Leishmania infected macrophages. Int J Pharm 196:253–6.
  • Kayser O. (2001). A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm 214:83–5.
  • Kharaji MH, Doroud D, Taheri T, et al. (2016). Drug targeting to macrophages with solid lipid nanoparticles harboring paromomycin: an in vitro evaluation against L. major and L. tropica. AAPS PharmSciTech 17:1110–9.
  • Khodabandeh M, Rostami A, Borhani K, et al. (2019). Treatment of resistant visceral leishmaniasis with interferon gamma in combination with liposomal amphotericin B and allopurinol. Parasitol Int 72:101934.
  • Kreuter J, Shamenkov D, Petrov V, et al. (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–25.
  • Kreuter J. (2001). Nanoparticles systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81.
  • Kumar R, Pandey K, Sahoo GC, et al. (2017). Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis. Mater Sci Eng C Mater Biol Appl 75:1465–71.
  • Labhasetwar VD, Dorle AK. (1990). Nanoparticles-A colloidal drug delivery system for primaquine and metronidazole. J. Control. Release 12:113–9.
  • Lala S, Basu MK. (2004). Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med 4:681–9.
  • Lee H, Fonge H, Hoang B, et al. (2010). The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharmaceutics 7:1195–208.
  • Lemke A, Kiderlen AF, Petri B, et al. (2010). Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomed-Nanotechnol 6:597–603.
  • Levchenko TS, Rammohan R, Lukyanov AN, et al. (2002). Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240:95–102.
  • Liu D, Mori A, Huang L. (1992). Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Bba-Mol Basis Dis 1104:95–101.
  • Liu XX, He XR, Sun ZL, et al. (2000). Pharmacokinetics of Praziquantel liposome in Goats. J Hunan Agri Uni 2000:436–8.
  • Liu Y, Li J, Shao K, et al. (2010). A leptin derived 30-amino-acid peptide modified PEGylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31:5246–57.
  • Liu Y, Wang XQ, Ren WX, et al. (2013). Novel albendazole-chitosan nanoparticles for intestinal absorption enhancement and hepatic targeting improvement in rats. J Biomed Mater Res B Res 101B:998–1005.
  • Lu M, Dan X, Sun W, et al. (2017). Sustained release ivermectin-loaded solid lipid dispersion for subcutaneous delivery: in vitro and in vivo evaluation. Drug Deliv 24:622–31.
  • Manca ML, Cassano R, Valenti D, et al. (2013). Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis. J Pharm Pharmacol 65:1302–11.
  • Marslin G, Siram K, Liu X, et al. (2017). Solid lipid nanoparticles of albendazole for enhancing cellular uptake and cytotoxicity against U-87 MG glioma cell lines. Molecules 22:2040.
  • Mayor S, Pagano RE. (2007). Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–12.
  • Mbela TKM, Poupaert JH, Dumont P. (1992). Poly(diethylmethylidene malonate) nanoparticles as primaquine delivery system to liver. Int. J. Pharm 79:29–38.
  • Meier B, Wiemer KB, Miethke RR. (2003). Invisalign®—patient profiling. J Orofac Orthop 64:352–8.
  • Mittapalli PK, Yamasani MR, Shashank A. (2007). Improved bioavailability of albendazole following oral administration of nanosuspension in rats. Curr Nanosci 3:191–4.
  • Moosavian SA, Fallah M, Jaafari MR. (2019). The activity of encapsulated meglumine antimoniate in stearylamine-bearing liposomes against cutaneous leishmaniasis in BALB/c mice. Exp Parasitol 200:30–5.
  • Moreno E, Schwartz J, Larrea E, et al. (2015). Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine 11:2003–12.
  • Mourão SC, Costa PI, Salgado HR, et al. (2005). Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm 295:157–62.
  • Mukherjee S, Das L, Kole L, et al. (2004). Targeting of parasite-specific immunoliposome-encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis. J Infect Dis 189:1024–34.
  • Müller PH, M?Der K, Gohla S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 50:0–177.
  • Müller RH, Jacobs C, Kayser O. (2001). Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19.
  • Negi JS, Chattopadhyay P, Sharma AK, et al. (2013). Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci 48:231–9.
  • Nishioka Y, Yoshino H. (2001). Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 47:55–64.
  • Omwoyo WN, Melariri P, Gathirwa JW, et al. (2016). Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine 12:801–9.
  • Oussoren C, Zuidema J, Crommelin DJ, et al. (1997). Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. II. Influence of liposomal size, lipid coposition and lipid dose. Biochim Biophys Acta 1328: 261–72.
  • Panwar P, Pandey B, Lakhera PC, et al. (2010). Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine 5:101–8.
  • Patel M, Mundada V, Sawant K. (2019). Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies. Artif Cells Nanomed Biotechnol 47:144–53.
  • Pensel P, Paredes A, Albani CM, et al. (2018). Albendazole nanocrystals in experimental alveolar echinococcosis: enhanced chemoprophylactic and clinical efficacy in infected mice. Vet Parasitol 251:78–84.
  • Pensel PE, Ullio GG, Fabbri J, et al. (2015). Cystic echinococcosis therapy: albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop 152:185–94.
  • Perrault SD, Walkey C, Jennings T, et al. (2009). Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–15.
  • Qu C, Zhang L, Du X, et al. (2018). Preparation and evaluation of wet-milled usnic acid nanocrystal suspension for better bioaffinity. Drug Dev Ind Pharm 44:707–12.
  • Radwan A, El-Lakkany NM, William S, et al. (2019). A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasit Vectors 12:304.
  • Rajendran V, Rohra S, Raza M, et al. (2016). Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother 60:1304–18.
  • Rathore A, Jain A, Gulbake A, et al. (2011). Mannosylated liposomes bearing Amphotericin B for effective management of visceral leishmaniasis. J Lipsome Res 21:333–40.
  • Roberts T, Murrell KD, Marks S. (1994). Economic losses caused by foodborne parasitic disease. Parasitol Today 10:419–23.
  • Sancey L, Kotb S, Truillet C, et al. (2015). Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. Acs Nano 9:2477–88.
  • Santiwarangkool S, Akita H, Khalil IA, et al. (2019). A study of the endocytosis mechanism and transendothelial activity of lung-targeted GALA-modified liposomes. J Control Release 307:55–63.
  • Sattar A, Chen DM, Jiang LS, et al. (2017). Preparation, characterization and pharmacokinetics of cyadox nanosuspension. Sci Rep 7:2289.
  • Sée V, Free P, Cesbron Y, et al. (2009). Cathepsin L digestion of nanobioconjugates upon endocytosis. Acs Nano 3:2461–8.
  • Shah SM, Ullah F, Khan S, et al. (2016). Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation. Dddt Volume 10:3837–50.
  • Shaik MS, Chatterjee A, Singh M. (2004). Effects of monensin liposomes on the cytotoxicity, apoptosis and expression of multidrug resistance genes in doxorubicin-resistant human breast tumour (MCF-7/dox) cell-line. J Pharm Pharmacol 56:899–907.
  • She YX, Basang WD, Dong LD. (2010). Preparation method of small unilamellar vesicle liposome of ivermectin.
  • Silva LD, Arrúa EC, Pereira DA, et al. (2016). Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Tropica 161:100–5.
  • Silva LD, Arrúa EC, Pereira DA, et al. (2016). Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Trop 161:100–5.
  • Simpson CA, Salleng KJ, Cliffel DE, et al. (2013). In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 9:257–63.
  • Souris JS, Lee CH, Cheng SH, et al. (2010). Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31:5564–74.
  • Souza ALR, Andreani T, Nunes FM, et al. (2012). Loading of praziquantel in the crystal lattice of solid lipid nanoparticles. J Therm Anal Calorim 08:353–60.
  • Souza Ribeiro Costa J, Medeiros M, Yamashiro-Kanashiro EH, et al. (2019). Biodegradable nanocarriers coated with polymyxin B: evaluation of leishmanicidal and antibacterial potential. PLOS Negl Trop Dis 13:e0007388.
  • Starkloff WJ, Bucalá V, Palma SD, et al. (2016). Design and in vitro characterization of ivermectin nanocrystals liquid formulation based on a top-down approach. Pharm Dev Technol 22:1.
  • Sukhanova A, Bozrova S, Sokolov P, et al. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:44.
  • Sun XF, Zhang YQ, Xian-Hui XU, et al. (2014). Study on pharmacokinetics of avermectin nanometre liposomes in goats. Prog Vet Med 35:71–4.
  • Tahereh ZM, Mehdi SA, Mostafa HMH, et al. (2018). Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in. Kidney. Sci Rep-UK 8:11759.
  • Talisuna AO, Bloland P, D'Alessandro U. (2004). History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 17:235–54.
  • Tripathy S, Mahapatra SK, Chattopadhyay S, et al. (2013). A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 128:494–503.
  • Ullio Gamboa GV, Pensel PE, Elissondo MC, et al. (2019). Albendazole-lipid nanocapsules: optimization, characterization and chemoprophylactic efficacy in mice infected with Echinococcus granulosus. Exp Parasitol 198:79–86.
  • Vaezifar S, Razavi S, Golozar MA, et al. (2013). Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. J Clust Sci 24:891–903.
  • Varshosaz J, Ahmadipour S, Tabbakhian M, et al. (2018). Nanocrystalization of pioglitazone by precipitation method. Drug Res 68:576–83.
  • Velebný S, Hrčková G, Tomašovičová O, et al. (2000). Treatment of larval toxocarosis in mice with fenbendazole entrapped in neutral and negatively charged liposomes. Helminthologia 37:119–25.
  • Vercruysse J, Schetters TP, Knox DP, et al. (2007). Control of parasitic disease using vaccines: an answer to drug resistance? Rev Sci Tech Oie 26:105.
  • Wagner V, Dullaart A, Bock AK, et al. (2006). The emerging nanomedicine landscape. Nat Biotechnol 24:1211–7.
  • Wen H, New RR, Muhmut M, et al. (1996). Pharmacology and efficacy of liposome-entrapped albendazole in experimental secondary alveolar echinococcosis and effect of co-administration with cimetidine. Parasitology 113:111–21.
  • Womack WR. (2006). Four-premolar extraction treatment with Invisalign. J Clin Orthod 40:493–500.
  • Wu M, Guo H, Liu L, et al. (2019). Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine 14:4247–59.
  • Xie SY, Pan BL, Shi BX, et al. (2011). Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm. Int J Nanomedicine 6:2367–74.
  • Xie SY, Pan BL, Wang M, et al. (2010). Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine 5:693–701.
  • Xie SY, Tao YF, Pan Y, et al. (2014). Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release 187:101–17.
  • Xu Y, Xin Z, Zhang X, et al. (2017). Preparation of intravenous injection nanoformulation via co-assemble between cholesterylated gemcitabine and cholesterylated mPEG: enhanced cellular uptake and intracellular drug controlled release. J Microencapsul 02:185–94.
  • Yang L, Geng Y, Li H, et al. (2009). Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie 64:86–9.
  • Yang Z, Leon J, Martin M, et al. (2009). Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20:165101.
  • Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, et al. (2018). Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci Rep 8:11759.
  • Zhang HY, Liu XX, Xiao HB, et al. (2000). Pharmacokinetics of praziquantel liposomes in rabbits. Chin J Vet Med 26:55–6.
  • ZHANG J, LIU F, HUANG L. (2005). Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Deliv Rev 57:689–98.
  • Zhang Y, Feng J, McManus SA, et al. (2017). Design and solidification of fast-releasing clofazimine nanoparticles for treatment of cryptosporidiosis. Mol Pharmaceutics 14:3480–8.
  • Zhang Y, Kohler N, Zhang M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–61.
  • Zhang ZH, Zhang YL, Zhou JP, et al. (2012). Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int J Nanomed 7:3333–9.
  • Zhou Y, Fang Q, Niu B, et al. (2018). Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloids Surf B Biointerfaces 172:372–9.