580
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in cell membrane-based biomimetic nanodelivery systems for natural products

, , , , , & show all
Article: 2361169 | Received 08 Jun 2023, Accepted 14 May 2024, Published online: 03 Jun 2024

References

  • Bajracharya R, Song JG, Patil BR, et al. (2022). Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 29:1–23. doi: 10.1080/10717544.2022.2089296.
  • Barclay AN. (2009). Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function. Curr Opin Immunol 21:47–52.
  • Barclay AN, Van den Berg TK. (2014). The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50.
  • Berger S. (1970). Platelet function a review. I. Normal function. Can Med Assoc J 102:1271–4.
  • Berta Esteban-Fernández DÁ, Pavimol A, Ramírez-Herrera DE, et al. (2018). Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci Robot 3(18):eaat0485. doi: 10.1126/scirobotics.aat0485.
  • Bian X, Wu P, Sha H, et al. (2016). Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. Onco Targets Ther 9:3153–62.
  • Cai D, Liu L, Han C, et al. (2019). Cancer cell membrane-coated mesoporous silica loaded with superparamagnetic ferroferric oxide and paclitaxel for the combination of chemo/magnetocaloric therapy on MDA-MB-231 cells. Sci Rep 9:14475. doi: 10.1038/s41598-019-51029-8.
  • Cai JX, Liu JH, Wu JY, et al. (2022). Hybrid cell membrane-functionalized biomimetic nanoparticles for targeted therapy of osteosarcoma. Int J Nanomed 17:837–54.
  • Cao H, Dan Z, He X, et al. (2016). Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10:7738–48. doi: 10.1021/acsnano.6b03148.
  • Cao X, Hu Y, Luo S, et al. (2019). Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm Sin B 9:575–89.
  • Cao X, Tan T, Zhu D, et al. (2020). Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy. Int J Nanomed 15:1915–28.
  • Chen M, Du ZY, Zheng X, et al. (2018b). Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 13:742–52. doi: 10.4103/1673-5374.230303.
  • Chen H, Sha H, Zhang L, et al. (2018a). Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int J Nanomed 13:5347–59.
  • Chowdhury P, Bhusetty Nagesh PK, Hollingsworth TJ, et al. (2022). Coating a self-assembly nanoconstruct with a neutrophil cell membrane enables high specificity for triple negative breast cancer treatment. ACS Appl Bio Mater 5:4554–66. doi: 10.1021/acsabm.2c00614.
  • Chu D, Dong X, Shi X, et al. (2018). Neutrophil-based drug delivery systems. Adv Mater 30:e1706245.
  • Chu Y, Luo Y, Su B, et al. (2023). A neutrophil-biomimic platform for eradicating metastatic breast cancer stem-like cells by redox microenvironment modulation and hypoxia-triggered differentiation therapy. Acta Pharm Sin B 13:298–314.
  • Crintea A, Dutu AG, Sovrea A, et al. (2022). Nanocarriers for drug delivery: an overview with emphasis on vitamin D and K transportation. Nanomaterials (Basel) 12:1376. doi: 10.3390/nano12081376.
  • Dadwal A, Baldi A. Kumar Narang R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 46:295–305.
  • Dash P, Piras AM, Dash M. (2020). Cell membrane coated nanocarriers – an efficient biomimetic platform for targeted therapy. J Control Release 327:546–70.
  • Din FU, Aman W, Ullah I, et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–309.
  • Do Carmo S, Spillantini MG, Cuello AC. (2021). Editorial: Tau pathology in neurological disorders. Front Neurol 12:754669. doi: 10.3389/fneur.2021.754669.
  • Du J, Sun J, Liu X, et al. (2023). Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur J Pharm Sci 180:106338. doi: 10.1016/j.ejps.2022.106338.
  • Fan Y, Cui Y, Hao W, et al. (2021). Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater 6:4402–14.
  • Felsher DW. (2003). Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 3:375–80. doi: 10.1038/nrc1070.
  • Feng Y, Tang F, Li S, et al. (2022). Mannose-modified erythrocyte membrane-encapsulated chitovanic nanoparticles as a DNA vaccine carrier against reticuloendothelial tissue hyperplasia virus. Front Immunol 13:1066268. doi: 10.3389/fimmu.2022.1066268.
  • Gabizon A, Martin F. (1997). Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54 Suppl 4:15–21. doi: 10.2165/00003495-199700544-00005.
  • Gao C, Chu X, Gong W, et al. (2020a). Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnol 18:71. doi: 10.1186/s12951-020-00626-1.
  • Gao C, Huang Q, Liu C, et al. (2020b). Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 11:2622. doi: 10.1038/s41467-020-16439-7.
  • Gao C, Wang Y, Sun J, et al. (2020c). Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater 108:285–99.
  • Gao Y, Zhu Y, Xu X, et al. (2021). Surface PEGylated cancer cell membrane-coated nanoparticles for codelivery of curcumin and doxorubicin for the treatment of multidrug resistant esophageal carcinoma. Front Cell Dev Biol 9:688070. doi: 10.3389/fcell.2021.688070.
  • Guo C, Hou X, Liu Y, et al. (2021). Novel Chinese angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine 80:153356. doi: 10.1016/j.phymed.2020.153356.
  • Han Y, Chu X, Cui L, et al. (2020b). Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 27:502–18.
  • Han L, Xu Y, Guo X, et al. (2020a). Cancer cell membrane-coated biomimetic platform for targeted therapy of breast cancer in an orthotopic mouse model. J Biomater Sci Polym Ed 31:1538–51.
  • Han Y, Zhao R, Xu F. (2018). Neutrophil-based delivery systems for nanotherapeutics. Small 14:e1801674. doi: 10.1002/smll.201801674.
  • Hare JI, Lammers T, Ashford MB, et al. (2017). Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38.
  • Harris JM, Martin NE, Modi M. (2001). Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–51. doi: 10.2165/00003088-200140070-00005.
  • Hatami E, Jaggi M, Chauhan SC, et al. (2020). Gambogic acid: a shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 1874:188381. doi: 10.1016/j.bbcan.2020.188381.
  • He H, Guo C, Wang J, et al. (2018). Leutusome: a biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett 18:6164–74.
  • He Z, Zhang Y, Feng N. (2020). Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C Mater Biol Appl 106:110298.
  • Holinstat M. (2017). Normal platelet function. Cancer Metastasis Rev 36:195–8. doi: 10.1007/s10555-017-9677-x.
  • Hu CM, Fang RH, Wang KC, et al. (2015a). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21. doi: 10.1038/nature15373.
  • Hu C, Lei T, Wang Y, et al. (2020). Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159. doi: 10.1016/j.biomaterials.2020.120159.
  • Hu Q, Sun W, Qian C, et al. (2015b). Anticancer platelet-mimicking nanovehicles. Adv Mater 27:7043–50.
  • Hu CM, Zhang L, Aryal S, et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 108:10980–5.
  • Huang Y, Li T, Gao W, et al. (2020b). Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B 8:5765–75.
  • Huang X, Wang L, Guo H, et al. (2023b). Macrophage membrane-coated nanovesicles for dual-targeted drug delivery to inhibit tumor and induce macrophage polarization. Bioact Mater 23:69–79.
  • Huang T, Wang Y, Shen Y, et al. (2020a). Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci Rep 10:8851. doi: 10.1038/s41598-020-65773-9.
  • Huang J, Zhu Y, Xiao H, et al. (2023a). Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 18:66. doi: 10.1186/s13020-023-00764-2.
  • Janiszewska M, Primi MC, Izard T. (2020). Cell adhesion in cancer: Beyond the migration of single cells. J Biol Chem 295:2495–505.
  • Ji J, Lian W, Zhang Y, et al. (2023). Preoperative administration of a biomimetic platelet nanodrug enhances postoperative drug delivery by bypassing thrombus. Int J Pharm 636:122851. doi: 10.1016/j.ijpharm.2023.122851.
  • Jin H, Luo R, Li J, et al. (2022). Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung injury. Front Pharmacol 13:1050224. doi: 10.3389/fphar.2022.1050224.
  • Jin K, Luo Z, Zhang B, et al. (2018). Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8:23–33.
  • Kang T, Zhu Q, Wei D, et al. (2017). Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11:1397–411. doi: 10.1021/acsnano.6b06477.
  • Karakoti AS, Das S, Thevuthasan S, et al. (2011). PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50:1980–94. doi: 10.1002/anie.201002969.
  • Katharina Buerger MD, Raymond Zinkowski PD, Stefan J, Teipel MD, et al. (2003). Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231. Brief Report.
  • Kattoor AJ, Pothineni NVK, Palagiri D, et al. (2017). Oxidative stress in atherosclerosis. Curr Atheroscler Rep 19:42. doi: 10.1007/s11883-017-0678-6.
  • Kaur A, Tiwari R, Tiwari G, et al. (2022). Resveratrol: a vital therapeutic agent with multiple health benefits. Drug Res (Stuttg) 72:5–17. doi: 10.1055/a-1555-2919.
  • Kim MW, Lee G, Niidome T, et al. (2020). Platelet-like gold nanostars for cancer therapy: the ability to treat cancer and evade immune reactions. Front Bioeng Biotechnol 8:133. doi: 10.3389/fbioe.2020.00133.
  • Kocaadam B, Sanlier N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57:2889–95.
  • Kunde SS, Wairkar S. (2021). Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm 598:120395.
  • Lai P-Y, Huang R-Y, Lin S-Y, et al. (2015). Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Adv 5:98222–30. doi: 10.1039/C5RA17447C.
  • Lanao JM, Gutiérrez-Millán C, Colino CI. (2020). Cell-based drug delivery platforms. Pharmaceutics 13:2. doi: 10.3390/pharmaceutics13010002.
  • Lefrançais E, Ortiz-Muñoz G, Caudrillier A, et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544:105–9. doi: 10.1038/nature21706.
  • Lei Y, Junxin C, Yongcan H, et al. (2020). Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment. J Bone Oncol 25:100322.
  • Li J, Gong C, Chen X, et al. (2023b). Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. J Nanobiotechnol 21:123. doi: 10.1186/s12951-023-01874-7.
  • Li Y, Guo C, Chen Q, et al. (2022b). Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. Int J Biol Macromol 202:691–706. doi: 10.1016/j.ijbiomac.2022.01.194.
  • Li R, He Y, Zhang S, et al. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 8:14–22.
  • Li S-D, Huang L. (2010). Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145:178–81.
  • Li H, Qiao W, Shen Y, et al. (2023a). Biomimetic boron nitride nanoparticles for targeted drug delivery and enhanced antitumor activity. Pharmaceutics 15:1269. doi: 10.3390/pharmaceutics15041269.
  • Li Y, Ruan S, Guo J, et al. (2022c). B16F10 cell membrane-based nanovesicles for melanoma therapy are superior to hyaluronic acid-modified nanocarriers. Mol Pharm 19:2840–53.
  • Li Z, Song Z, He C, et al. (2022d). Aspirin curcumin ester loaded biomimetic nanodrug improves cognitive deficits in a mouse model of Alzheimer’s disease by regulating M1/M2 microglial polarization. Mater Today Adv 16:100321. doi: 10.1016/j.mtadv.2022.100321.
  • Li B, Tan T, Chu W, et al. (2022a). Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv 29:75–88.
  • Li Z, Yang G, Han L, et al. (2021b). Sorafenib and triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma. J Nanobiotechnol 19:360. doi: 10.1186/s12951-021-01095-w.
  • Li C, Zhao Z, Luo Y, et al. (2021a). Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci 8(20):e2101526.. doi: 10.1002/advs.202101526.
  • Liu R, An Y, Jia W, et al. (2020a). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601.
  • Liu Q, Hu Y, Zheng P, et al. (2023a). Exploiting immunostimulatory mechanisms of immunogenic cell death to develop membrane-encapsulated nanoparticles as a potent tumor vaccine. J Nanobiotechnol 21:326. doi: 10.1186/s12951-023-02031-w.
  • Liu Y, Luo J, Chen X, et al. (2019d). Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett 11:100.
  • Liu Y, Luo J, Liu Y, et al. (2022b). Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson’s disease. ACS Cent Sci 8:1336–49.
  • Liu R, Luo C, Pang Z, et al. (2023b). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett 34:107518. doi: 10.1016/j.cclet.2022.05.032.
  • Liu X, Sun Y, Xu S, et al. (2019c). Homotypic cell membrane-cloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma. Theranostics 9:5828–38. doi: 10.7150/thno.34837.
  • Liu Y, Wen N, Li K, et al. (2022c). Photolytic removal of red blood cell membranes camouflaged on nanoparticles for enhanced cellular uptake and combined chemo-photodynamic inhibition of cancer cells. Mol Pharm 19:805–18.
  • Liu Y, Xie X, Chen H, et al. (2020b). Advances in next-generation lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chinese medicine delivery. Nanomedicine 29:102237.
  • Liu S, Xu J, Liu Y, et al. (2022a). Neutrophil-biomimetic “nanobuffer” for remodeling the microenvironment in the infarct core and protecting neurons in the penumbra via neutralization of detrimental factors to treat ischemic stroke. ACS Appl Mater Interf 14:27743–61.
  • Liu J, Yang Y, Liu X, et al. (2021). Macrophage-biomimetic anti-inflammatory liposomes for homing and treating of aortic dissection. J Control Release 337:224–35.
  • Liu C, Zhang W, Li Y, et al. (2019a). Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett 19:7836–44.
  • Liu G, Zhao X, Zhang Y, et al. (2019b). Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv Mater 31:e1900795.
  • Liu Z, Zhou X, Li Q, et al. (2023c). Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharm Sin B 13:327–43.
  • Lu J, Gao X, Wang S, et al. (2023). Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration 3(1):20220045. doi: 10.1002/EXP.20220045.
  • Ma J, Dai L, Yu J, et al. (2023). Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials 295:122026. doi: 10.1016/j.biomaterials.2023.122026.
  • Mantovani A, Allavena P, Sica A, et al. (2008). Cancer-related inflammation. Nature 454:436–44. doi: 10.1038/nature07205.
  • Mei D, Gong L, Zou Y, et al. (2020). Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release 324:341–53.
  • Najafi M, Hashemi Goradel N, Farhood B, et al. (2019). Macrophage polarity in cancer: a review. J Cell Biochem 120:2756–65.
  • Nguyen DX, Bos PD, Massagué J. (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–84. doi: 10.1038/nrc2622.
  • Oroojalian F, Beygi M, Baradaran B, et al. (2021). Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 17:e2006484. doi: 10.1002/smll.202006484.
  • Parodi A, Quattrocchi N, van de Ven AL, et al. (2013). Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–8.
  • Patel SR, Hartwig JH, Italiano JE.Jr. (2005). The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 115:3348–54. doi: 10.1172/JCI26891.
  • Patra JK, Das G, Fraceto LF, et al. (2018). Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16:71. doi: 10.1186/s12951-018-0392-8.
  • Pei Q, Hu X, Zheng X, et al. (2018). Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12:1630–41. doi: 10.1021/acsnano.7b08219.
  • Pierige F, Serafini S, Rossi L, et al. (2008). Cell-based drug delivery. Adv Drug Deliv Rev 60:286–95.
  • Puglia C, Lauro MR, Tirendi GG, et al. (2017). Modern drug delivery strategies applied to natural active compounds. Expert Opin Drug Deliv 14:755–68.
  • Ran D, Mao J, Zhan C, et al. (2017). D-retro-enantiomer of quorum sensing peptides-modified polymeric micelles for brain tumor targeted drug delivery. ACS Appl Mater Interf 9(31):25672–25682.
  • Rao L, Cai B, Bu LL, et al. (2017). Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11:3496–505. doi: 10.1021/acsnano.7b00133.
  • Rao L, Bu L-L, Cai B, et al. (2016). Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28(18):3460–3466.
  • Raza F, Zafar H, Zhang S, et al. (2021). Recent advances in cell membrane-derived biomimetic nanotechnology for cancer immunotherapy. Adv Healthc Mater 10:e2002081.
  • Safarpour F, Kharaziha M, Emadi R. (2022). Inspiring biomimetic system based on red blood cell membrane vesicles for effective curcumin loading and release. Int J Pharm 613:121419. doi: 10.1016/j.ijpharm.2021.121419.
  • Saigusa R, Winkels H, Ley K. (2020). T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17:387–401. doi: 10.1038/s41569-020-0352-5.
  • Sanchez Armengol E, Unterweger A, Laffleur F. (2022). PEGylated drug delivery systems in the pharmaceutical field: past, present and future perspective. Drug Dev Ind Pharm 48(4):129–139.
  • Sha H, Li R, Bian X, et al. (2015a). A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo. Eur J Pharm Sci 77:60–72.
  • Sha H, Zou Z, Xin K, et al. (2015b). Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release 200:188–200.
  • Shen W, Ge S, Liu X, et al. (2022). Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv 29:31–42.
  • Shen LM, Li MC, Wei WJ, et al. (2021). In vitro neuroprotective effects of macrophage membrane-derived curcumin-loaded carriers against 1-methyl-4-phenylpyridinium-induced neuronal damage. ACS Omega 6:32133–41. doi: 10.1021/acsomega.1c04894.
  • Song M, Dong S, An X, et al. (2022). Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers. J Control Release 345:744–54.
  • Swierczewska M, Crist RM, McNeil SE. (2018). Evaluating nanomedicines: obstacles and advancements. Methods Mol Biol 1682:3–16.
  • Tang Z, Meng S, Song Z, et al. (2023). Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity. Mater Today Bio 20:100674.
  • Viegas JSR, Praca FG, Kravicz M, et al. (2020). Therapeutic applications and delivery systems for triptolide. Drug Deliv Transl Res 10:1584–600.
  • Villa CH, Seghatchian J, Muzykantov V. (2016). Drug delivery by erythrocytes: “Primum non nocere. Transf Apheresis Sci 55:275–80. doi: 10.1016/j.transci.2016.10.017.
  • Wan S, Fan Q, Wu Y, et al. (2023). Curcumin-loaded platelet membrane bioinspired chitosan-modified liposome for effective cancer therapy. Pharmaceutics 15:631. doi: 10.3390/pharmaceutics15020631.
  • Wang S, Duan Y, Zhang Q, et al. (2020d). Drug targeting via platelet membrane-coated nanoparticles. Small Struct 1(1):2000018.
  • Wang P, Jiang F, Chen B, et al. (2020c). Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids Surf B Biointerf 189:110842.
  • Wang S, Jiang H, Wang J, et al. (2021b). Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer. J Biomed Res 35:327–38. doi: 10.7555/JBR.35.20210102.
  • Wang H, Liu Y, He R, et al. (2020a). Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci 8:552–68.
  • Wang Z, Tang XL, Zhao MJ, et al. (2023b). Biomimetic hypoxia-triggered RNAi nanomedicine for synergistically mediating chemo/radiotherapy of glioblastoma. J Nanobiotechnol 21:210. doi: 10.1186/s12951-023-01960-w.
  • Wang D, Wang S, Zhou Z, et al. (2022). White blood cell membrane-coated nanoparticles: recent development and medical applications. Adv Healthc Mater 11:e2101349.
  • Wang H, Williams GR, Xie X, et al. (2020b). Stealth polydopamine-based nanoparticles with red blood cell membrane for the chemo-photothermal therapy of cancer. ACS Appl Bio Mater 3:2350–9.
  • Wang L, Wu M, Pan Y, et al. (2023a). Sequential targeting biomimetic nano platform for enhanced mild photothermal therapy and chemotherapy of tumor. Comput Struct Biotechnol J 21:2780–91.
  • Wang H, Zang J, Zhao Z, et al. (2021a). The advances of neutrophil-derived effective drug delivery systems: a key review of managing tumors and inflammation. Int J Nanomed 16:7663–81.
  • Wilkinson L, Gathani T. (2022). Understanding breast cancer as a global health concern. Br J Radiol 95:20211033.
  • Wolf D, Ley K. (2019). Immunity and inflammation in atherosclerosis. Circ Res 124:315–27.
  • Wu L, Chen J, Wu Y, et al. (2017a). Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. J Control Release 249:84–93.
  • Wu MY, Li CJ, Hou MF, et al. (2017b). New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci 18(10):2034.
  • Wu Y, Zhu R, Zhou M, et al. (2023). Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 558:216106. doi: 10.1016/j.canlet.2023.216106.
  • Xie X, Wang H, Williams GR, et al. (2019). Erythrocyte membrane cloaked curcumin-loaded nanoparticles for enhanced chemotherapy. Pharmaceutics 11:429. doi: 10.3390/pharmaceutics11090429.
  • Xie L, Zhang C, Liu M, et al. (2023). Nucleus-targeting manganese dioxide nanoparticles coated with the human umbilical cord mesenchymal stem cell membrane for cancer cell therapy. ACS Appl Mater Interf 15:10541–53.
  • Xinyue D, Dafeng C, Zhenjia W. (2018). Neutrophil-mediated delivery of nanotherapeutics across blood vessel barrier. Ther Deliv 9:29–35.
  • Xu Z, Huang J, Zhang T, et al. (2023b). RGD peptide modified RBC membrane functionalized biomimetic nanoparticles for thrombolytic therapy. J Mater Sci Mater Med 34:18. doi: 10.1007/s10856-023-06719-1.
  • Xu J, Li D, Kang L, et al. (2023a). Systematic evaluation of membrane-camouflaged nanoparticles in neutralizing Clostridium perfringens epsilon-toxin. J Nanobiotechnol 21:95. doi: 10.1186/s12951-023-01852-z.
  • Xu C, Liu W, Hu Y, et al. (2020). Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy. Theranostics 10:3325–39. doi: 10.7150/thno.41228.
  • Yang Y, Hua S, Suo W, et al. (2021). A novel bionic catalyst-mediated drug delivery system for enhanced sonodynamic therapy. Front Bioeng Biotechnol 9:699737. doi: 10.3389/fbioe.2021.699737.
  • Ying K, Zhu Y, Wan J, et al. (2023). Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioact Mater 20:449–62.
  • Yu Y, Zhang H, Ren T, et al. (2020). Development of a prognostic gene signature based on an immunogenomic infiltration analysis of osteosarcoma. J Cell Mol Med 24:11230–42.
  • Zang S, Huang K, Li J, et al. (2022). Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy. Acta Biomater 148:181–93.
  • Zhai Z, Xu P, Yao J, et al. (2020). Erythrocyte-mimicking paclitaxel nanoparticles for improving biodistributions of hydrophobic drugs to enhance antitumor efficacy. Drug Deliv 27:387–99.
  • Zhang Y, Cai K, Li C, et al. (2018a). Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett 18:1908–15.
  • Zhang Y, Feng X, Jia X, et al. (2021a). Biomimetic Ca(2+) nanogenerator based on ions interference strategy for tumour-specific therapy. J Drug Target 29:1094–101.
  • Zhang Y, He Z, Li Y, et al. (2021b). Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells. Mater Sci Eng C Mater Biol Appl 120:111670.
  • Zhang Z, Ji Y, Hu N, et al. (2022). Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J Pharm Sci 17:751–66.
  • Zhang Z, Qian H, Huang J, et al. (2018b). Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomed 13:4961–75.
  • Zhang Y, Xia Q, Wu T, et al. (2021c). A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy. J Nanobiotechnol 19:245. doi: 10.1186/s12951-021-00977-3.
  • Zheng Y, Wang Y, Xia M, et al. (2022). The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 12:1306–25.
  • Zheng J, Yang N, Wan Y, et al. (2023). Celastrol-loaded biomimetic nanodrug ameliorates APAP-induced liver injury through modulating macrophage polarization. J Mol Med (Berl) 101:699–716. doi: 10.1007/s00109-023-02321-8.
  • Zhou J, Guo B, Zhu W, et al. (2021). Novel biomimetic nanostructured lipid carriers for cancer therapy: preparation, characterization, and in vitro/in vivo evaluation. Pharm Dev Technol 26:81–91.
  • Zhu F, Huang C, Lin Y, et al. (2023). Self-delivery of a metal-coordinated anti-angiogenic nanodrug with GSH depleting ability for synergistic chemo-phototherapy. Biomater Sci 11:7132–45. doi: 10.1039/d3bm00994g.
  • Zhu DM, Xie W, Xiao YS, et al. (2018). Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology 29:084002. doi: 10.1088/1361-6528/aa9ca1.