262
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in polymeric nano-delivery systems targeting hair follicles for the treatment of acne

, , , , , , & show all
Article: 2372269 | Received 02 Aug 2023, Accepted 05 Jun 2024, Published online: 02 Jul 2024

References

  • Abreu CM, Marques AP. (2022). Recreation of a hair follicle regenerative microenvironment: successes and pitfalls. Bioeng Transl Med 7:1. doi: 10.1002/btm2.10235.
  • Al Mahrooqi JH, Khutoryanskiy VV, Williams AC. (2021). Thiolated and PEGylated silica nanoparticle delivery to hair follicles. Int J Pharm 593:120130. doi: 10.1016/j.ijpharm.2020.120130.
  • Alvarez-Román R, Naik A, Kalia YN, et al. (2004). Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–13. doi: 10.1016/j.jconrel.2004.06.015.
  • Andrade J, Cunha-Filho M, Gelfuso GM, Gratieri T. (2023). Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv 20:785–98. doi: 10.1080/17425247.2023.2209719.
  • Araújo RV, Santos S, Igne Ferreira E, Giarolla J. (2018). New advances in general biomedical applications of PAMAM dendrimers. Molecules 23:2849. doi: 10.3390/molecules23112849.
  • Bachhav YG, Mondon K, Kalia YN, et al. (2011). Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release 153:126–32. doi: 10.1016/j.jconrel.2011.03.003.
  • Bader KB, Makin I, Abramowicz JS, Bioeffects Committee of the American Institute of Ultrasound in Medicine. (2022). Ultrasound for aesthetic applications: a review of biophysical mechanisms and safety. J Ultrasound Med 41:1597–607. doi: 10.1002/jum.15856.
  • Blume-Peytavi U, Vogt A. (2011). Human hair follicle: reservoir function and selective targeting. Br J Dermatol 165 Suppl 2:13–7. doi: 10.1111/j.1365-2133.2011.10572.x.
  • Budhiraja A, Dhingra G. (2015). Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv 22:723–30. doi: 10.3109/10717544.2014.903010.
  • Chaiwarit T, Sommano SR, Rachtanapun P, et al. (2022). Development of carboxymethyl chitosan nanoparticles prepared by ultrasound-assisted technique for a clindamycin HCl carrier. Polymers (Basel) 14:1736. doi: 10.3390/polym14091736.
  • Chambers ES, Vukmanovic-Stejic M. (2020). Skin barrier immunity and ageing. Immunology 160:116–25. doi: 10.1111/imm.13152.
  • Chen MC, Lai KY, Ling MH, Lin CW. (2018). Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater 65:66–75. doi: 10.1016/j.actbio.2017.11.004.
  • Cheng Y, Xu Z, Ma M, Xu T. (2008). Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–43. doi: 10.1002/jps.21079.
  • Contri RV, Fiel LA, Alnasif N, et al. (2016). Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 507:12–20. doi: 10.1016/j.ijpharm.2016.03.046.
  • Contri RV, Soares RM, Pohlmann AR, Guterres SS. (2014). Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Mater Sci Eng C Mater Biol Appl 42:234–42. doi: 10.1016/j.msec.2014.05.001.
  • Correia JH, Rodrigues JA, Pimenta S, et al. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13:1332. doi: 10.3390/pharmaceutics13091332.
  • Costa C, Cavaco-Paulo A, Matamá T. (2021). Mapping hair follicle-targeted delivery by particle systems: what has science accomplished so far. Int J Pharm 610:121273. doi: 10.1016/j.ijpharm.2021.121273.
  • Dahmana N, Mugnier T, Gabriel D, et al. (2021). Polymeric micelle mediated follicular delivery of spironolactone: targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int J Pharm 604:120773. doi: 10.1016/j.ijpharm.2021.120773.
  • Davies DJ, Heylings JR, Gayes H, et al. (2017). Further development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol In Vitro 38:101–7. doi: 10.1016/j.tiv.2016.10.004.
  • Dayal S, Kalra KD, Sahu P. (2020). Comparative study of efficacy and safety of 45% mandelic acid versus 30% salicylic acid peels in mild-to-moderate acne vulgaris. J Cosmet Dermatol 19:393–9. doi: 10.1111/jocd.13168.
  • Diaz-San Segundo F, Medina GN, Azzinaro P, et al. (2021). Use of protein pegylation to prolong the antiviral effect of IFN against FMDV. Front Microbiol 12:668890. doi: 10.3389/fmicb.2021.668890.
  • Ding H, Cui Y, Yang J, et al. (2023). ROS-responsive microneedles loaded with integrin avβ6-blocking antibodies for the treatment of pulmonary fibrosis. J Control Release 360:365–75. doi: 10.1016/j.jconrel.2023.03.060.
  • Dong P, Sahle FF, Lohan SB, et al. (2019). pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 295:214–22. doi: 10.1016/j.jconrel.2018.12.045.
  • Dréno B, Pécastaings S, Corvec S, et al. (2018). Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 32 Suppl 2:5–14. doi: 10.1111/jdv.15043.
  • Ebrahimi S, Mahjub R, Haddadi R, Vafaei SY. (2021). Design and optimization of cationic nanocapsules for topical delivery of tretinoin: application of the Box-Behnken design, in vitro evaluation, and ex vivo skin deposition study. Biomed Res Int 2021:4603545. doi: 10.1155/2021/4603545.
  • Eichenfield DZ, Sprague J, Eichenfield LF. (2021). Management of acne vulgaris: a review. JAMA 326:2055–67. doi: 10.1001/jama.2021.17633.
  • Ferreira-Nunes R, Cunha-Filho M, Gratieri T, Gelfuso GM. (2021). Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf B Biointerfaces 208:112101. doi: 10.1016/j.colsurfb.2021.112101.
  • Folle C, Marqués AM, Díaz-Garrido N, et al. (2021). Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 19:359. doi: 10.1186/s12951-021-01092-z.
  • Friedman AJ, Phan J, Schairer DO, et al. (2013). Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 133:1231–9. doi: 10.1038/jid.2012.399.
  • Giulbudagian M, Rancan F, Klossek A, et al. (2016). Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J Control Release 243:323–32. doi: 10.1016/j.jconrel.2016.10.022.
  • Główka E, Wosicka-Frąckowiak H, Hyla K, et al. (2014). Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles. Eur J Pharm Biopharm 88:75–84. doi: 10.1016/j.ejpb.2014.06.019.
  • Gökçe BB, Boran T, Emlik Çalık F, et al. (2021). Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv Transl Res 11:626–46. doi: 10.1007/s13346-021-00933-6.
  • Guo C, Khengar RH, Sun M, et al. (2014). Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm Res 31:3051–9. doi: 10.1007/s11095-014-1398-z.
  • Huang B, Dong WJ, Yang GY, et al. (2015). Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther 9:3867–76. doi: 10.2147/DDDT.S75702.
  • Kahraman E, Güngör S, Özsoy Y. (2017). Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 8:967–85. doi: 10.4155/tde-2017-0075.
  • Kahraman E, Özhan G, Özsoy Y, Güngör S. (2016). Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surf B Biointerfaces 146:692–9. doi: 10.1016/j.colsurfb.2016.07.029.
  • Kalave S, Chatterjee B, Shah P, Misra A. (2021). Transdermal delivery of macromolecules using nano lipid carriers. Curr Pharm Des 27:4330–40. doi: 10.2174/1381612827666210820095330.
  • Kandekar SG, Del Río-Sancho S, Lapteva M, Kalia YN. (2018). Selective delivery of adapalene to the human hair follicle under finite dose conditions using polymeric micelle nanocarriers. Nanoscale 10:1099–110. doi: 10.1039/c7nr07706h.
  • Kanti V, Messenger A, Dobos G, et al. (2018). Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men - short version. J Eur Acad Dermatol Venereol 32:11–22. doi: 10.1111/jdv.14624.
  • Kassan DG, Lynch AM, Stiller MJ. (1996). Physical enhancement of dermatologic drug delivery: iontophoresis and phonophoresis. J Am Acad Dermatol 34:657–66. doi: 10.1016/s0190-9622(96)80069-7.
  • Kemeriz F, Kayabaşı S, Cevirgen Cemil B, Hızlı Ö. (2021). Evaluation of oral isotretinoin effects on hearing system in patients with acne vulgaris: reversible or not. Dermatol Ther 34:e14640. doi: 10.1111/dth.14640.
  • Khan S, Fitch S, Knox S, Arora R. (2022). Exocrine gland structure-function relationships. Development 149:dev197657. doi: 10.1242/dev.197657.
  • Kim Y, Park EJ, Na DH. (2018). Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res 41:571–82. doi: 10.1007/s12272-018-1008-4.
  • Kly S, Huang Y, Moffitt MG. (2023). Enhancement of cellular uptake by increasing the number of encapsulated gold nanoparticles in polymeric micelles. J Colloid Interface Sci 652:142–54. doi: 10.1016/j.jcis.2023.08.060.
  • Lapteva M, Möller M, Gurny R, Kalia YN. (2015). Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle. Nanoscale 7:18651–62. doi: 10.1039/c5nr04770f.
  • Lapteva M, Mondon K, Möller M, et al. (2014). Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: a targeted approach for the treatment of psoriasis. Mol Pharm 11:2989–3001. doi: 10.1021/mp400639e.
  • Lauterbach A, Müller-Goymann CC. (2015). Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 97:152–63. doi: 10.1016/j.ejpb.2015.06.020.
  • Li Z, He Y, Deng L, et al. (2020). A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B 8:216–25. doi: 10.1039/c9tb02061f.
  • Liang Y, Zhang ZR. (2021). [Research development in transfersome-based drug delivery system]. Sichuan Da Xue Xue Bao Yi Xue Ban 52:543–7. doi: 10.12182/20210760203.
  • Lin SF, Jiang PL, Tsai JS, et al. (2019). Surface assembly of poly(I:C) on polyethyleneimine-modified gelatin nanoparticles as immunostimulatory carriers for mucosal antigen delivery. J Biomed Mater Res B Appl Biomater 107:1228–37. doi: 10.1002/jbm.b.34215.
  • Liu XY, Xu LY, Wang YJ, et al. (2019). [Effect and mechanism of essential oil from Zanthoxylum bungeanum in microemulsion gel preparation on percutaneous delivery of complex components]. Zhongguo Zhong Yao Za Zhi 44:4627–33. doi: 10.19540/j.cnki.cjcmm.20190910.301.
  • Lu XY, Wu DC, Li ZJ, Chen GQ. (2011). Polymer nanoparticles. Prog Mol Biol Transl Sci 104:299–323. doi: 10.1016/B978-0-12-416020-0.00007-3.
  • Mahe B, Vogt A, Liard C, et al. (2009). Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol 129:1156–64. doi: 10.1038/jid.2008.356.
  • Mahmoud NN, Alkilany AM, Dietrich D, et al. (2017). Preferential accumulation of gold nanorods into human skin hair follicles: effect of nanoparticle surface chemistry. J Colloid Interface Sci 503:95–102. doi: 10.1016/j.jcis.2017.05.011.
  • Manikkath J, Hegde AR, Kalthur G, et al. (2017). Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm 521:110–9. doi: 10.1016/j.ijpharm.2017.02.002.
  • Martel JL, Miao JH, Badri T. Fakoya AO. Anatomy, Hair Folllicle. In:StatPearls. Treasure Island (FL):StatPearls Publishing; 2024.
  • Md Jaffri J. (2023). Reactive oxygen species and antioxidant system in selected skin disorders. Malays J Med Sci 30:7–20. doi: 10.21315/mjms2023.30.1.2.
  • Mehan N, Kumar M, Bhatt S, et al. (2022). Self-assembly polymeric nano micelles for the futuristic treatment of skin cancer and phototoxicity: therapeutic and clinical advancement. Crit Rev Ther Drug Carrier Syst 39:79–95. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035589.
  • Milosheska D, Roškar R. (2022). Use of retinoids in topical antiaging treatments: a focused review of clinical evidence for conventional and nanoformulations. Adv Ther 39:5351–75. doi: 10.1007/s12325-022-02319-7.
  • Mohsin N, Hernandez LE, Martin MR, et al. (2022). Acne treatment review and future perspectives. Dermatol Ther 35:e15719. doi: 10.1111/dth.15719.
  • Nakatsuji T, Liu YT, Huang CP, et al. (2008). Antibodies elicited by inactivated propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. J Invest Dermatol 128:2451–7. doi: 10.1038/jid.2008.117.
  • Oge’ LK, Broussard A, Marshall MD. (2019). Acne vulgaris: diagnosis and treatment. Am Fam Physician 100:475–84.
  • Ogunjimi AT, Chahud F, Lopez R. (2021). Isotretinoin-Delonix polymeric nanoparticles: potentials for skin follicular targeting in acne treatment. Int J Pharm 610:121217. doi: 10.1016/j.ijpharm.2021.121217.
  • Otlewska A, Baran W, Batycka-Baran A. (2020). Adverse events related to topical drug treatments for acne vulgaris. Expert Opin Drug Saf 19:513–21. doi: 10.1080/14740338.2020.1757646.
  • Ourique AF, Pohlmann AR, Guterres SS, Beck RC. (2008). Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm 352:1–4. doi: 10.1016/j.ijpharm.2007.12.035.
  • Patzelt A, Richter H, Knorr F, et al. (2011). Selective follicular targeting by modification of the particle sizes. J Control Release 150:45–8. doi: 10.1016/j.jconrel.2010.11.015.
  • Pelikh O, Eckert RW, Pinnapireddy SR, Keck CM. (2021). Hair follicle targeting with curcumin nanocrystals: influence of the formulation properties on the penetration efficacy. J Control Release 329:598–613. doi: 10.1016/j.jconrel.2020.09.053.
  • Proksch E. (2018). pH in nature, humans and skin. J Dermatol 45:1044–52. doi: 10.1111/1346-8138.14489.
  • Ramezanli T, Zhang Z, Michniak-Kohn BB. (2017). Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomedicine 13:143–52. doi: 10.1016/j.nano.2016.08.008.
  • Ramos J, Forcada J, Hidalgo-Alvarez R. (2014). Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chem Rev 114:367–428. doi: 10.1021/cr3002643.
  • Rancan F, Giulbudagian M, Jurisch J, et al. (2017). Drug delivery across intact and disrupted skin barrier: identification of cell populations interacting with penetrated thermoresponsive nanogels. Eur J Pharm Biopharm 116:4–11. doi: 10.1016/j.ejpb.2016.11.017.
  • Rancan F, Guo X, Rajes K, et al. (2021). Topical delivery of rapamycin by means of microenvironment-sensitive core-multi-shell nanocarriers: assessment of anti-inflammatory activity in an ex vivo skin/T cell co-culture model. Int J Nanomedicine 16:7137–51. doi: 10.2147/IJN.S330716.
  • Rancan F, Papakostas D, Hadam S, et al. (2009). Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26:2027–36. doi: 10.1007/s11095-009-9919-x.
  • Rangsimawong W, Opanasopit P, Rojanarata T, Ngawhirunpat T. (2015). Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with d-limonene. Int J Nanomedicine 10:7413–23. doi: 10.2147/IJN.S96831.
  • Ratan C, Arian AM, Rajendran R, et al. (2023). Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 18:052008. doi: 10.1088/1748-605X/acf0af.
  • Reis CP, Martinho N, Rosado C, et al. (2014). Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment. Drug Dev Ind Pharm 40:409–17. doi: 10.3109/03639045.2013.767826.
  • Sahle FF, Gerecke C, Kleuser B, Bodmeier R. (2017). Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm 516:21–31. doi: 10.1016/j.ijpharm.2016.11.029.
  • Sahle FF, Giulbudagian M, Bergueiro J, et al. (2017). Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale 9:172–82. doi: 10.1039/c6nr06435c.
  • Salem HF, Kharshoum RM, Awad SM, et al. (2021). Tailoring of retinyl palmitate-based ethosomal hydrogel as a novel nanoplatform for acne vulgaris management: fabrication, optimization, and clinical evaluation employing a split-face comparative study. Int J Nanomedicine 16:4251–76. doi: 10.2147/IJN.S301597.
  • Sallam MA, Marín Boscá MT. (2017). Mechanistic analysis of human skin distribution and follicular targeting of adapalene-loaded biodegradable nanospheres with an insight into hydrogel matrix influence, in vitro skin irritation, and in vivo tolerability. J Pharm Sci 106:3140–9. doi: 10.1016/j.xphs.2017.05.038.
  • Shamloul G, Khachemoune A. (2021). An updated review of the sebaceous gland and its role in health and diseases Part 2: pathophysiological clinical disorders of sebaceous glands. Dermatol Ther 34:e14862. doi: 10.1111/dth.14862.
  • Sharma G, Yachha Y, Thakur K, et al. (2021). Co-delivery of isotretinoin and clindamycin by phospholipid-based mixed micellar system confers synergistic effect for treatment of acne vulgaris. Expert Opin Drug Deliv 18:1291–308. doi: 10.1080/17425247.2021.1919618.
  • Skov MJ, Quigley JW, Bucks DA. (1997). Topical delivery system for tretinoin: research and clinical implications. J Pharm Sci 86:1138–43. doi: 10.1021/js9604568.
  • Szepietowska M, Bień B, Krajewski PK, et al. (2023). Prevalence, intensity and psychosocial burden of acne itch: two different cohorts study. J Clin Med 12:3997. doi: 10.3390/jcm12123997.
  • Takeuchi I, Suzuki T, Makino K. (2017). Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf B Biointerfaces 159:312–7. doi: 10.1016/j.colsurfb.2017.08.003.
  • Takeuchi I, Takeshita T, Suzuki T, Makino K. (2017). Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B Biointerfaces 160:520–6. doi: 10.1016/j.colsurfb.2017.10.011.
  • Tang X, Liu Y, Yuan H, Gao R. (2022). Development of a self-assembled hydrogels based on carboxymethyl chitosan and oxidized hyaluronic acid containing tanshinone extract nanocrystals for enhanced dissolution and acne treatment. Pharmaceuticals (Basel) 15:1534. doi: 10.3390/ph15121534.
  • Tanner P, Baumann P, Enea R, et al. (2011). Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 44:1039–49. doi: 10.1021/ar200036k.
  • Tolentino S, Pereira MN, Cunha-Filho M, et al. (2021). Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr Polym 253:117295. doi: 10.1016/j.carbpol.2020.117295.
  • Tolino E, Skroza N, Proietti I, et al. (2020). Efficacy and safety of systemic isotretinoin treatment for moderate to severe acne (insights from the real-life clinical setting). Dermatol Ther 33:e14392. doi: 10.1111/dth.14392.
  • Tomić I, Miočić S, Pepić I, et al. (2021). Efficacy and safety of azelaic acid nanocrystal-loaded in situ hydrogel in the treatment of acne vulgaris. Pharmaceutics 13:567. doi: 10.3390/pharmaceutics13040567.
  • Tomoda K, Terashima H, Suzuki K, et al. (2011). Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis. Colloids Surf B Biointerfaces 88:706–10. doi: 10.1016/j.colsurfb.2011.08.004.
  • Tran TQ, Hsieh MF, Chang KL, et al. (2016). Bactericidal effect of lauric acid-loaded PCL-PEG-PCL nano-sized micelles on skin commensal ­propionibacterium acnes. Polymers (Basel) 8:321. doi: 10.3390/polym8090321.
  • Ushirobira CY, Afiune L, Pereira MN, et al. (2020). Dutasteride nanocapsules for hair follicle targeting: effect of chitosan-coating and physical stimulus. Int J Biol Macromol 151:56–61. doi: 10.1016/j.ijbiomac.2020.02.143.
  • Vasanth S, Dubey A, Ravi GS, et al. (2020). Development and investigation of Vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech 21:61. doi: 10.1208/s12249-019-1518-5.
  • Venuganti VV, Perumal OP. (2009). Poly(amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci 98:2345–56. doi: 10.1002/jps.21603.
  • Villani A, Nastro F, Di Vico F, et al. (2022). Oral isotretinoin for acne: a complete overview. Expert Opin Drug Saf 21:1027–37. doi: 10.1080/14740338.2022.2102605.
  • Vogt A, Combadiere B, Hadam S, et al. (2006). 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + cells after transcutaneous application on human skin. J Invest Dermatol 126:1316–22. doi: 10.1038/sj.jid.5700226.
  • Wan T, Pan Q, Ping Y. (2021). Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv 7. doi: 10.1126/sciadv.abe2888.
  • Wang Y, Hata TR, Tong YL, et al. (2018). The anti-inflammatory activities of propionibacterium acnes CAMP factor-targeted acne vaccines. J Invest Dermatol 138:2355–64. doi: 10.1016/j.jid.2018.05.032.
  • Wang Z, Liu L, Xiang S, et al. (2020). Formulation and characterization of a 3D-printed cryptotanshinone-loaded niosomal hydrogel for topical therapy of acne. AAPS PharmSciTech 21:159. doi: 10.1208/s12249-020-01677-1.
  • Welle MM. (2023). Basic principles of hair follicle structure, ­morphogenesis, and regeneration. Vet Pathol 60:732–47. doi: 10.1177/03009858231176561.
  • Xu Y, Cai Y, Meng Y, et al. (2022). Liposome and microemulsion loaded with ibuprofen: from preparation to mechanism of drug transport. J Microencapsul 39:539–51. doi: 10.1080/02652048.2022.2131920.
  • Yang D, Chen M, Sun Y, et al. (2021). Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 121:119–33. doi: 10.1016/j.actbio.2020.12.004.
  • Yu A, Volkers G, Jongkees S, et al. (2022). Crystal structure of the Propionibacterium acnes surface sialidase, a drug target for P. acnes-associated diseases. Glycobiology 32:162–70. doi: 10.1093/glycob/cwab094.
  • Yu Z, Lv H, Han G, Ma K. (2016). Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One 11:e0159967. doi: 10.1371/journal.pone.0159967.
  • Yuan M, Liu K, Jiang T, et al. (2022). GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology 20:147. doi: 10.1186/s12951-022-01354-4.
  • Zaric M, Lyubomska O, Poux C, et al. (2015). Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells. J Invest Dermatol 135:425–34. doi: 10.1038/jid.2014.415.
  • Zhang E, Zeng B, Song R, et al. (2023). Sustained antigens delivery ­using composite microneedles for effective epicutaneous immunotherapy. Drug Deliv Transl Res 13:1828–41. doi: 10.1007/s13346-023-01298-8.
  • Zhang NN, Shen X, Liu K, et al. (2022). Polymer-tethered nanoparticles: from surface engineering to directional self-assembly. Acc Chem Res 55:1503–13. doi: 10.1021/acs.accounts.2c00066.
  • Zhu J, Tang X, Jia Y, et al. (2020). Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery - A review. Int J Pharm 578:119127. doi: 10.1016/j.ijpharm.2020.119127.