267
Views
1
CrossRef citations to date
0
Altmetric
Original

Primary Study on Transplantation of Endothelialized Dermal Equivalents Into Normal Rats

, , , &
Pages 377-390 | Published online: 11 Jul 2009

REFERENCES

  • Rheinwald, J.G., Green, H. (1975). Serial cultivation of stains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6: 331–344.
  • Bell, E., Sher, S., Hull, B., Merril, M.S., Neveux, Y. (1983). The reconstruction of living skin. J. Invest. Dermatol. 81: 2s–10s.
  • Archambault, M., Yaar, M., Gilchrest, B.A. (1995). Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J. Invest. Dermatol. 104: 859–867.
  • Shahabeddin, L., Berthod, F., Damour, O., Collombel, C. (1990). Characterization of skin reconstructed on a chitosan-cross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol. 3: 107–114.
  • Cooper, M.L., Hansbrough, J.F. (1991). Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice. Surgery 109: 198–207.
  • Eaglstein, W.H., Iriondo, M., Laszlo, K. (1995). A composite skin substitute (graftskin) for surgical wounds. A clinical experience. Dermatol. Surg. 21: 839–843.
  • Falabella, A.F., Valencia, I.C., Eaglstein, W.H., Schachner, L.A. (2000). Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch. Dermatol. 136: 1225–1230.
  • Sheridan, R.L., Morgan, J.R., Cusick, J.L., Petras, L.M., Lydon, M. M., Tompkins, R.G. (2001). Initial experience with a composite autologous skin substitute. Burns 27: 421–424.
  • Balasubramani, M., Kumar, T.R., Babu, M. (2001). Skin substitutes a review. Burns 27: 534–544.
  • Young, D.M., Greulich, K.M., Weier, H.G. (1996). Species-specific in situ hybridation with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J. Burn Care Rehabil. 17: 305–310.
  • Supp, D.M., Supp, A.P., Bell, S.M., Boyce, S.T. (2000). Enhancd vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J. Invest. Dermatol. 114: 5–13.
  • Boyce, S.T., Goretsky, M.J., Greenhalgh, D.G., Kagan, R.J., Rieman, M.T., Warden, G.D. (1995). Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 222: 743–752.
  • Boyce, S.T., Kagan, R.J., Meyer, N.A., Yakuboff, K.P., Warden, G.D. (1999). The 1999 clinical research award: Cultured skin substitutes combined with Integra Artificial SkinTM to replace native skin autograft and allograft for the closure of excised full-thickness burns. J. Burn Care Rehabil. 20: 453–61.
  • Boyce, S.T., Supp, A.P., Harriger, M.D., Greenhalgh, D.G., Warden, G.D. (1995). Topical nutrients promote engraftment and inhibit wound contraction of cultured skin substitutes in athymic mice. J. Invest. Dermatol. 104: 345–349.
  • Montesano, R., Vassalli, J.D., Baird, A., Guillemin, R., Orci, L. (1986). Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. 83: 7297–7301.
  • Atkins, B.Z., Hueman, M.T., Meuchel, J.M., Cottman, M.J., Hutcheson, K.A., Taylor, D.A. (1999). Myogenic cell transplantation improved in vivo regional performance in infarcted rabbit myocardium. J. Heart Lung Transplant. 18: 1173–1180.
  • Hudon, V., Berthod, F., Black, A.F., Damour, O., Germain, L., Auger, F. A. (2003). A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br. J. Dermatol. 148: 1094–104.
  • Hutmacher, D.W., Garcia, A.J. (2005). Scaffold-based bone engineering by using genetically modified cells. Gene 347(1): 1–10.
  • Peirce, S.M., Price, R.J., Skalak, T.C. (2004). Spatial and temporal control of angiogenesis and arterialization using focal application of VEGF164 and Ang-1. Am. J. Physiol Heart Circ. Physiol. 286: 918–925.
  • Supp, D.M., Boyce, S.T. (2002). Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J. Burn Care Rehabil. 23: 10–20.
  • Schwarz, E.R., Speakman, M.T., Patterson, M., Hale, S.S., Isner, J.M., Kedes, L.H., Kloner, R.A. (2000). Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat: Angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35: 1323–1330.
  • Schechner, J.S., Crane, S.K., Wang, F., Szeglin, A.M., Tellides, G., Lorber, M.I., Bothwell, A.L., Pober, J.S. (2003). Engraftment of a vascularized human skin equivalent. FASEB J. 17: 2250–2256.
  • Black, A.F., Berthod, F., L'Heureux, N., Germain, L., Auger, F.A. (1998). In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12: 1331–1340.
  • Supp, D.M., Wilson-Landy, K., Boyce, S.T. (2002). Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 16: 797–804.
  • Jacques, E.N., Martin, C.P., Joan, B.C., Michelle, M.S., Stephanie, L., Mohamed, K.K., Christina, L.A., David, J.M., Peter, J.P. (2001). Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81: 453–463.
  • Kim, B.S., Mooney, D.J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16: 224–230.
  • Freyman, T.M., Yannas, I.V., Yokoo, R., Gibson, L.J. (2001). Fibroblast contraction of a collagen-GAG matrix. Biomaterials 22: 2883–2891.
  • Guest, J.D., Rao, A., Olson, L., Bunge, M.B., Bunge, R.P. (1997). The ability of human Schwann cell grafts to promote regeneration in the transected nuderat spinal cord. Exp. Neurol. 148: 502–522.
  • Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials 26(15): 2559–66.
  • Cassell, O.C., Morrison, W.A., Messina, A., Penington, A.J., Thompson, E.W., Stevens, G.W., Perera, J.M., Kleinman, H.K., Hurley, J.V., Romeo, R., Knight, K.R. (2001). The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann. N. Y. Acad. Sc. 944: 429–442.
  • Marijnissen, W.J., van Osch, G.J., Aigner, J., van der Veen, S.W., Hollander, A.P., Verwoerd-Verhoef, H.L., Verhaar, J.A. (2002). Alginate as achondrocyte-delivery substance in combination with a nonwoven scaffold for cartilage tissue engineering. Biomaterials 23: 1511–1517.
  • Kubota, Y., Kleinman, H.K., Martin, G.R., Lawley, T. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells in capillary-like structure. J. Cell Biol. 107: 1589–1598.
  • Schechner, J.S., Nath A.K., Zheng L., Kluger, M.S., Hughes, C.C., Sierra-Honigmann, M.R., Lorber, M.I., Tellides, G., Kashgarian, M., Bothwell, A.L. (2000). In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. 97: 9191–9196.
  • Auger, F.A., Lopez Valle, C.A., Guignard, R., Tremblay, N., Noel, B., Goulet, F., Germain, L. (1995). Skin equivalents produced by tissue-engineering using human collagens. In Vitro Cell. Dev. Biol. 31: 432–439.
  • Jaffe, E.A., Machman, R.L., Bekcer, C.G., Minick, C.R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–2758.
  • L'Heureux, N., Germain, L., Labbé, R., Auger, F.A. (1993). In vitro construction of human blood vessel from cultured vascular cells: A morphologic study. J. Vasc. Surg. 17: 499–509.
  • Voyta, J.C., Via, D.P., Butterfield, C.E., Zetter, B.R. (1984). Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99: 2034–2040.
  • Pieper, J.S., Hafmans, T., Veerkamp, J.H., van Kuppevelt, T.H. (2000). Development of tailor-made collagen-glycosanminoglycan matrices: EDC/ NHS crosslinking, and ultrastructural aspects. Biomaterials 21: 581–593.
  • Damour, O., Gueugniaud, P.Y., Bertin-Maghit, M., Rousselle, P., Berthod, F., Sahuc, F., Collombel, C. (1994). A dermal substrate made of collagen-GAGchitosan for deep burn coverage: First clinical uses. Clin. Mater. 15: 273–276.
  • Basadonna, G.P., Auersvald, L., Khuong, C.Q., Zheng, X.X., Kashio, N., Zekzer, D., Minozzo M., Qian, H., Visser, L., Diepstra, A., Lazarovits, A.I., Poppema, S., Strom, T.B., Rothstein, D.M. (1998). Antibody-mediated targeting of CD45 isoforms: A novel immunotherapeutic strategy. Proc. Natl. Acad. Sci. 95(7): 3821–3826.
  • Pins, G.D., Toner, M., Morgan, J.R. (2000). Microfabrication of an analog of the basal lamina: Biocompatible membranes with complex topographies. FASEB J. 14(3): 593–602.
  • Scorsin, M., Hagege, A., Vilquin, J.T., Fiszman, M., Marotte, F., Samuel, J.L., Rappaport, L., Schwartz, K., Menasche, P. (2000). Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119: 1169–1175.
  • Velazquez, O.C., Snyder, R., Liu, Z.J., Fairman, R.M., Herlyn, M. (2002). Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like, three-dimensional networks. FASEB J. 16(10): 1316–8.
  • Albelda, S.M., Muller, W.A., Buck, C.A., Newman, P.J. (1991). Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule. J. Cell Bio. 114(5): 1059–1068.
  • Newman, P.J., Berndt, M.C., Gorski, J., White, G.C., 2nd., Lyman, S., Paddock, C., Muller, W.A. (1990). PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–22.
  • Barbera-Guillem, E., Nyhus, J.K., Wolford, C.C., Friece, C.R., Sampsel, J.W. (2002). Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Research 62: 7042–7049.
  • Ilan, N., Mahooti, S., Madri, J.A. (1998). Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J. Cell Sci. 111: 3621–3631.
  • Sahota, P.S., Burn, J.L., Heaton, M., Freedlander, E., Suvarna, S.K., Brown, N.J., Mac Neil, S. (2003). Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen. 11: 275–84.
  • Bour-Jordan, H., Blueston, J.A. (2002). CD28 function: A balance of costimulatory and regulatory signals. J. Clin. Immunol. 22: 1–7.
  • Risau, W. (1997). Mechanisms of angiogenesis. Nature 17: 386 (6626), 671–4.
  • Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277: 48–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.