582
Views
17
CrossRef citations to date
0
Altmetric
Original

Convection and Hemoglobin-Based Oxygen Carrier Enhanced Oxygen Transport in a Hepatic Hollow Fiber Bioreactor

, &
Pages 386-402 | Published online: 11 Jul 2009

REFERENCES

  • Sullivan J. P., Gordon J. E., Palmer A. F. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor. Biotechnol Bioeng 2006; 93: 306–317
  • Sullivan J. P., Palmer A. F. Targeted oxygen delivery within hepatic hollow fiber bioreactors via supplementation of hemoglobin-based oxygen carriers. Biotechnol Prog 2006; 22: 1374–1387
  • Hay P. D., Veitch A. R., Smith M. D., Cousins R. B., Gaylor J. D. S. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver. Artif Organs 2000; 24: 278–288
  • Willaert R., Smets A., De Vuyst L. Mass transfer limitations in diffusion-limited isotropic hollow fiber bioreactors. Biotechnol Techs 1999; 13: 317–323, (1999)
  • Patzer J. F. Advances in bioartificial liver assist devices. Bioartificial Organs III: Tissue Sourcing, Immunoisolation and Clinical Trials. New York Academy of Sciences, New York, NY 2001; vol 944: 320–333
  • Piret J. M., Cooney C. L. Model of oxygen-transport limitations in hollow fiber bioreactors. Biotechnol Bioeng 1991; 37: 80–92
  • Allen J. W., Bhatia S. N. Impr ving the next generation of bioartificial liver devices. Sem Cell & Develop Bio 2002; 13: 447–454
  • Sullivan J. P., Gordon J. E., Bou-Akl T., Matthew H. W. T., Palmer A. F. Enhanced oxygen delivery to primary rat hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cell Blood Substit Immobil Biotechnol 2007; 35: 585–606
  • Katayama S., Tateno C., Asahara T., Yoshizato K. Size-dependent in-vivo growth potential of adult rat hepatocytes. Amer Jour Path 2001; 158: 97–105
  • Van De Graff M. K. Human Anatomy. McGraw-Hill, New York 1998; vol 10
  • Hui T., Rozga J., Demetriou A. Bioartificial liver support. J Hepatobiliary Pancreat Surg 2001; 8: 1–15
  • Kelly J. H.. Permanent human hepatocyte cell line and its use in a liver assist device (LAD). United States Patent No. 5, 290, 684, 1994
  • Nyberg S. L., Remmel R. P., Mann H. J., Peshwa M. V., Hu W. S., Cerra F. B. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Annals Surg 1994; 220: 59–67
  • Gordon J. E., Palmer A. F. Impact of increased oxygen delivery via bovine red blood cell supplementation of culturing media on select metabolic and synthetic functions of C3A hepatocytes maintained within a hollow fiber bioreactor. Artif Cell Blood Subst Immobil Biotechnol 2005; 33: 297–306
  • Samsel R. W., Cherqui D., Pietrabissa A., Sanders W. M., Roncella M., Emond J. C., Schumacker P. T. Hepatic oxygen and lactate extraction during stagnant hypoxia. J Appl Physiol 1991; 70: 186–193
  • Patzer J. F. Oxygen consumption in a hollow fiber bioartificial liver-revisited. Artif Organs 2004; 28: 83–98
  • Arias I. M. The Liver Biology and Pathobiology. Raven Press, New York 1994
  • Walker C. O., Schenker S. Pathogenesis of hepatic encephalopathy with special reference to role of ammonia. Amer Jour Clin Nutr 1970; 23: 619–632
  • Hay P. D., Veitch A. R., Gaylor J. D. S. Oxygen transfer in a convection-enhanced hollow-fiber bioartificial liver. Artif Organs 2001; 25: 119–130
  • Giorgio T., Moscioni A., Rozga J., Demetriou A. Mass transfer in a hollow fiber device used as a bioartificial liver. ASAIO Journal 1993; 39: 886–892
  • Khalil M., Shariat-Panahi A., Tootle R., Ryder T., McCloskey P., Roberts E., Hodgson H., Selden C. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 2001; 34: 68–77
  • Yu S. H., Buchholz R., Kim S. K. Encapsulation of rat hepatocyte spheroids for the development of artificial liver. Biotechnol Techs 1999; 13: 609–614
  • Choi Y. S., Lee D. Y., Kim I. Y., Kang S., Ahn K., Kim H. J., Jeong Y. H., Chun G. T., Park J. H., Kim I. H. Ammonia removal using hepatoma cells in mammalian cell cultures. Biotechnol Prog 2000; 16: 760–768
  • Funatsu K., Ijima H., Nakazawa K., Yamashita Y., Shimada M., Sugimachi K. Hybrid artificial liver using hepatocyte organoid culture. Artif Organs 2001; 25: 194–200
  • Takai M., Fukuda N., Yoshida T. Comparison of different hepatocyte cell lines for use in a hybrid artificial liver model. Cytotechnology 1997; 24: 39–45
  • Nyberg S. L., Shatford R. A., Peshwa M. V., White J. G., Cerra F. B., Hu W. S. Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: A potential bioartificial liver. Biotechnol Bioeng 1993; 41: 194–203
  • Phillips J. W., Clark D. G., Henly D. C., Berry M. N. The contribution of glucose cycling to the maintenance of steady-state levels of lactate by hepatocytes during glycolysis and glucogenesis. FEBS Journal (Euro Jour Biochem) 1995; 227: 352–358
  • Katz J., Wals P. A., Golden S., Rognstad R. Recycling of glucose by rat hepatocytes. FEBS Journal (Euro Jour Biochem) 1975; 60: 91–101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.