643
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Sensitivity improved tapered optical fiber sensor for dissolved oxygen detection

ORCID Icon, , , &

References

  • Nugraha, W. D.; Sarminingsih, A.; Alfisya, B. The Study of Self Purification Capacity Based on Biological Oxygen Demand (BOD) and Dissolved Oxygen (DO) Parameters. IOP Conf. Ser. Earth Environ. Sci. 2020, 448, 012105. DOI: 10.1088/1755-1315/448/1/012105.
  • Sofia, D. R. 2020 The Effect of Ozonation on Dissolved Oxygen and Microbiological Content in Refill Drinking Water, IOP Conference Series Earth and Environmental ENCE, 443, 012105.
  • Thulasi, D.; Muralidhar, M.; Saraswathy, R. Effect of Sulphide in Pacific White Shrimp Penaeus vannamei under Varying Oxygen and pH Levels. Aquac. Res. 2020, 51, 2389–2399. DOI: 10.1111/are.14582.
  • Cao, W.; Huan, J.; Liu, C.; Qin, Y.; Wu, F. A Combined Model of Dissolved Oxygen Prediction in the Pond Based on Multiple-Factor Analysis and Multi-Scale Feature Extraction. Aquacult. Eng. 2019, 84, 50–59. DOI: 10.1016/j.aquaeng.2018.12.003.
  • Wu, S.; Wu, S.; Yi, Z.; Zeng, F.; Wu, W.; Qiao, Y.; Zhao, X.; Cheng, X.; Tian, Y. Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies. Sensors 2018, 18, 564. DOI: 10.3390/s18020564.
  • Nicola, T.; Diego, B. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project. Sensors 2018, 18, 1130. DOI: 10.3390/s18041130.
  • Weichert, H.; Lüders, J.; Becker, M. Integrated Optical Single-Use Sensors: Moving toward a True Single-Use Factory for Biologics and Vaccine Production. Bioprocess Int. 2014, 12.
  • Wang, Q.; Jing, J.-Y.; Zhao, W.-M.; Fan, X.-C.; Wang, X.-Z. A Novel Fiber-Based Symmetrical Long-Range Surface Plasmon Resonance Biosensor with High Quality Factor and Temperature Self-Reference. IEEE Trans. Nanotechnol. 2019, 18, 1137–1143. DOI: 10.1109/TNANO.2019.2947697.
  • Wang, Q.; Jing, J.-Y.; Wang, B.-T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein a Co-Modified TFBG for Human IgG Detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. DOI: 10.1109/TIM.2018.2875961.
  • Juranek, L. W.; Quay, P. D. Using Triple Isotopes of Dissolved Oxygen to Evaluate Global Marine Productivity. Ann. Rev. Mar. Sci. 2013, 5, 503–524. DOI: 10.1146/annurev-marine-121211-172430.
  • Helm, I.; Jalukse, L.; Leito, I. A Highly Accurate Method for Determination of Dissolved Oxygen: gravimetric Winkler Method. Anal. Chim. Acta. 2012, 741, 21–31. DOI: 10.1016/j.aca.2012.06.049.
  • Zhang, Z.; Chen, Z.; Cheng, F.; Zhang, Y.; Chen, L. Iodine-Mediated Etching of Gold Nanorods for Plasmonic Sensing of Dissolved Oxygen and Salt Iodine. Analyst 2016, 141, 2955–2961. DOI: 10.1039/C5AN02633D.
  • Moya, A.; Sowade, E.; del Campo, F. J.; Mitra, K. Y.; Ramon, E.; Villa, R.; Baumann, R. R.; Gabriel, G. All-Inkjet-Printed Dissolved Oxygen Sensors on Flexible Plastic Substrates. Org. Electron. 2016, 39, 168–176. DOI: 10.1016/j.orgel.2016.10.002.
  • Lee, H-j.; Kim, H.-M.; Park, J.-H.; Lee, S.-K. Fabrication and Characterization of Micro Dissolved Oxygen Sensor Activated on Demand Using Electrolysis. Sens. Actuat., B 2017, 241, 923–930. DOI: 10.1016/j.snb.2016.10.145.
  • Luo, J.; Eitel, R. An Integrated Low Temperature Co-Fired Ceramic-Based Clark-Type Oxygen Sensor. IEEE Sens. J. 2017, 17, 1590–1595. DOI: 10.1109/JSEN.2016.2645792.
  • Zolkapli, M.; Saharudin, S.; Herman, S. H.; Abdullah, W. F. H. Quasi-Distributed Sol-Gel Coated Fiber Optic Oxygen Sensing Probe. Optical Fiber Technol. 2018, 41, 109–117. DOI: 10.1016/j.yofte.2017.12.016.
  • Wang, Q.; Wang, L. Lab-on-Fiber: Plasmonic Nano-Arrays for Sensing. Nanoscale 2020, 12, 7485–7499. DOI: 10.1039/d0nr00040j.
  • Mao, Y.; Mei, Z.; Wen, J.; Li, G.; Tian, Y.; Zhou, B.; Tian, Y. Honeycomb Structured Porous Films from a Platinum Porphyrin-Grafted Poly(Styrene-co-4-Vinylpyridin-e) Copolymer as an Optical Oxygen Sensor. Sens. Actuat., B 2018, 257, 944–953. DOI: 10.1016/j.snb.2017.11.042.
  • Escalé, P.; Rubatat, L.; Billon, L.; Save, M. Recent Advances in Honeycomb-Structured Porous Polymer Films Prepared via Breath Figures. Eur. Polym. J. 2012, 48, 1001–1025. DOI: 10.1016/j.eurpolymj.2012.03.001.
  • Zike, J.; Xinsheng, Y.; Shikui, Z.; Yingyan, H. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles. Sensors 2017, 17, 548–563. DOI: 10.3390/s17030548
  • Chu, C. S.; Chuang, C. Y. Optical Fiber Sensor for Dual Sensing of Dissolved Oxygen and Cu2+ Ions Based on PdTFPP/CdSe Embedded in Sol–Gel Matrix. Sens. Actuat., B 2015, 209, 94–99. DOI: 10.1016/j.snb.2014.11.084.
  • Feng, W.; Zhou, N.; Chen, L.; Li, B. An Optical Sensor for Monitoring of Dissolved Oxygen Based on Phase Detection. J. Opt. 2013, 15, 055502. DOI: 10.1088/2040-8978/15/5/055502.
  • Jing, J.-Y.; Wang, Q.; Zhao, W.-M.; Wang, B.-T. Long-Range Surface Plasmon Resonance and Its Sensing Applications: A Review. Opt. Lasers Eng. 2019, 112, 103–118. DOI: 10.1016/j.optlaseng.2018.09.013.
  • Wang, Q.; Zhao, W.-M. A Comprehensive Review of Lossy Mode Resonance Based Fiber Optic Sensors. Opt. Lasers Eng. 2018, 100, 47–60. DOI: 10.1016/j.optlaseng.2017.07.009.
  • Wang, Q.; Jing, J.-Y.; Wang, X.-Z.; Niu, L.-Y.; Zhao, W.-M. A D-Shaped Fiber Long-Range Surface Plasmon Resonance Sensor with High Q-Factor and Temperature Self-Compensation. IEEE Trans. Instrum. Meas. 2020, 69, 2218–2224. DOI: 10.1109/TIM.2019.2920187.
  • Pulido, C.; Esteban, O. Tapered polymer optical fiber oxygen sensor based on fluorescence-quenching of an embedded fluorophore, Sens. Actuat., 2013, B184(jul.31), 64–69. DOI: 10.1016/j.snb.2013.04.061.
  • Iguchi, A.; Tsuji, Y.; Yasui, T.; Hirayama, K. Efficient Topology Optimization of Optical Waveguide Devices Utilizing Semi-Vectorial Finite-Difference Beam Propagation Method. Opt. Express 2017, 25, 28210–28222. DOI: 10.1364/OE.25.028210.
  • Chao, J.; Li, Z.; Li, J.; Peng, H.; Su, S.; Li, Q.; Zhu, C.; Zuo, X.; Song, S.; Wang, L.; Wang, L. Hybridization Chain Reaction Amplification for Highly Sensitive Fluorescence Detection of DNA with Dextran Coated Microarrays. Biosens. Bioelectron. 2016, 81, 92–96. DOI: 10.1016/j.bios.2016.01.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.