1,175
Views
10
CrossRef citations to date
0
Altmetric
Review

Development of tin-based perovskite materials for solar cell applications: A minireview

References

  • Cohen, R. E. Origin of Ferroelectricity in Perovskite Oxides. Science 1992, 358, 136–138. DOI: 10.1038/358136a0.
  • Peña, M. A.; Fierro, J. L. G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2017. DOI: 10.1021/cr980129f.
  • Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. DOI: 10.1021/ja809598r.
  • Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Robin, H. B.; Yum, J. H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. DOI: 10.1038/srep00591.
  • Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. DOI: 10.1126/science.1228604.
  • Hoefler, S. F.; Trimmel, G.; Rath, T. Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: A Review. Monatsh. Chem. 2017, 148, 795–826. DOI: 10.1007/s00706-017-1933-9.
  • Yang, D.; Lv, J.; Zhao, X.; Xu, Q.; Fu, Y.; Zhan, Y.; Zunger, A.; Zhang, L. Functionality-Directed Screening of Pb-Free Hybrid Organic-Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities. Chem. Mater. 2017, 29, 524–538. DOI: 10.1021/acs.chemmater.6b03221.
  • Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Arquer, F. P. G. D.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science 2017, 355, 722–726. DOI: 10.1126/science.aai9081.
  • Shi, Z.; Guo, J.; Chen, Y.; Li, Q.; Pan, Y.; Zhang, H.; Xia, Y.; Huang, W. Lead-Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. Adv. Mater. 2017, 29, 1605005. DOI: 10.1002/adma.201605005.
  • Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. DOI: 10.1021/acs.chemrev.5b00715.
  • Ergen, O.; Gilbert, S. M.; Pham, T.; Turner, S. J.; Tan, M. T. Z.; Worsley, M. A.; Zettl, A. Graded Bandgap Perovskite Solar Cells. Nat Mater. 2017, 16, 522–525. DOI: 10.1038/nmat4795.
  • Chen, B.; Zheng, X.; Bai, Y.; Padture, N. P.; Huang, J. Progress in Tandem Solar Cells Based on Hybrid Organic–Inorganic Perovskites. Adv. Energy Mater. 2017, 7, 1602400. DOI: 10.1002/aenm.201602400.
  • Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv Sci (Weinh) 2017, 4, 1700204. DOI: 10.1002/advs.201700204.
  • Yang, Z.; Rajagopal, A.; Jo, S. B.; Chueh, C. C.; Williams, S. T.; Huang, C. C.; Katahara, J. K.; Hillhouse, H. W.; Jen, A. K. Y. Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. Nano Lett. 2016, 16, 7739–7747. DOI: 10.1021/acs.nanolett.6b03857.
  • Song, T. B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M. G. Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive. ACS Energy Lett. 2017, 2, 897–903. DOI: 10.1021/acsenergylett.7b00171.
  • Song, T. B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G. Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells . J. Am. Chem. Soc. 2017, 139, 836–842. DOI: 10.1021/jacs.6b10734.
  • Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; et al. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. J. Am. Chem. Soc. 2016, 138, 12360–12363. DOI: 10.1021/jacs.6b08337.
  • Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K.; et al. Low-Bandgap Mixed Tin–Lead Iodide Perovskite Absorbers with Long Carrier Lifetimes for All-Perovskite Tandem Solar Cells. Nat. Energy 2017, 2, 17018. DOI: 10.1038/nenergy.2017.18.
  • Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; Brink, G. H.; Koster, L. J. A.; Loi, M. A. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 2018, 8, 1702019. DOI: 10.1002/aenm.201702019.
  • Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater. Weinheim. 2016, 28, 9333–9340. DOI: 10.1002/adma.201602992.
  • Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc. 2016, 138, 3974–3977. DOI: 10.1021/jacs.6b00142.
  • Borriello, I.; Cantele, G.; Ninno, D. Ab Initio Investigation of Hybrid Organic-Inorganic Perovskites Based on Tin Halides. Phys. Rev. B 2008, 77, 235214. DOI: 10.1103/PhysRevB.77.235214.
  • Yin, W. J.; Yang, J. H.; Kang, J.; Yan, Y.; Wei, S. H. Halide Perovskite Materials for Solar Cells: A Theoretical Review. J. Mater. Chem. A 2015, 3, 8926–8942. DOI: 10.1039/C4TA05033A.
  • Pan, Y. Y.; Su, Y. H.; Hsu, C. H.; Huang, L. W.; Kaun, C. C. The Electronic Structure of Organic–Inorganic Hybrid Perovskite Solar Cell: A First-Principles Analysis. Comp. Mater. Sci. 2016, 117, 573–578. DOI: 10.1016/j.commatsci.2015.12.015.
  • Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C. Z. Recent Advances in Perovskite Solar Cells: efficiency, Stability and Lead-Free Perovskite. J. Mater. Chem. A 2017, 5, 11462–11482. DOI: 10.1039/C7TA00366H.
  • Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G. Unleaded” Perovskites: status Quo and Future Prospects of Tin-Based Erovskite Solar Cells. Adv. Mater. 2019, 31, 1803230. DOI: 10.1002/adma.201803230.
  • Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; et al. Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energ. Environ. Sci. 2014, 7, 3061–3068. DOI: 10.1039/C4EE01076K.
  • Wu, B.; Zhou, Y.; Xing, G.; Xu, Q.; Garces, H. F.; Solanki, A.; Goh, T. W.; Padture, N. P.; Sum, T. C. Long Minority-Carrier Diffusion Length and Low Surface-Recombination Velocity in Inorganic Lead-Free CsSnI3 Perovskite Crystal for Solar Cells. Adv. Funct. Mater. 2017, 27, 1604818. DOI: 10.1002/adfm.201604818.
  • Waleed, A.; Tavakoli, M. M.; Gu, L.; Wang, Z.; Zhang, D.; Manikandan, A.; Zhang, Q.; Zhang, R.; Chueh, Y.; Fan, Z. Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Lett. 2017, 17, 523–530. DOI: 10.1021/acs.nanolett.6b04587.
  • Lü, X.; Wang, Y.; Stoumpos, C. C.; Hu, Q.; Guo, X.; Chen, H.; Yang, L.; Smith, J. S.; Yang, W.; Zhao, Y.; et al. Enhanced Structural Stability and Photo Responsiveness of CH3NH3SnI3 Perovskite via Pressure-Induced Amorphization and Recrystallization. Adv. Mater. 2016, 28, 8663–8668. DOI: 10.1002/adma.201600771.
  • Ma, L.; Hao, F.; Stoumpos, C. C.; Phelan, B. T.; Wasielewski, M. R.; Kanatzidis, M. G. Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. J. Am. Chem. Soc. 2016, 138, 14750–14755. DOI: 10.1021/jacs.6b09257.
  • Zhang, F.; Shi, W. D.; Luo, J. S.; Pellet, N.; Yi, C. Y.; Li, X.; Zhao, X. M.; Dennis, T. J. S.; Li, X. G.; Wang, S. R.; et al. Isomer-Pure bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv. Mater. 2017, 29, 1606806. DOI: 10.1002/adma.201606806.
  • Lee, S.; Kang, D. W. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine. ACS Appl Mater Interfaces 2017, 9, 22432–22439. DOI: 10.1021/acsami.7b04011.
  • Yang, Z.; Wang, Y.; Liu, Y. Stability and Charge Separation of Different CH3NH3SnI3/TiO2 Interface: A Firstprinciples Study. Appl. Surf. Sci. 2018, 441, 394–400. DOI: 10.1016/j.apsusc.2018.02.038.
  • Baig, F.; Khattak, Y. H.; Mari, B.; Beg, S.; Gillani, S. R.; Ahmed, A. Mitigation of Interface Recombination by Careful Selection of ETL for Efficiency Enhancement of MASnI3 Solar Cell. Optik 2018, 170, 463–474. DOI: 10.1016/j.ijleo.2018.05.135.
  • Baig, F.; Khattak, Y. H.; Mari, B.; Beg, S.; Ahmed, A.; Khan, K. Efficiency Enhancement of CH3NH3SnI3 Solar Cells by Device Modeling. J. Elec. Mater. 2018, 47, 5275–5282. DOI: 10.1007/s11664-018-6406-3.
  • Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. Formamidinium Tin-Based Perovskite with Low Eg for Photovoltaic Applications. J. Mater. Chem. A 2015, 3, 14996–15000. DOI: 10.1039/C5TA00190K.
  • Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth. Angew. Chem. Int. Ed. Engl. 2016, 55, 3447–3450. DOI: 10.1002/ange.201511792.
  • Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites. Adv. Funct. Mater. 2016, 26, 3417–3423. DOI: 10.1002/adfm.201505127.
  • Maughan, A. E.; Ganose, A. M.; Candia, A. M.; Granger, J. T.; Scanlon, D. O.; Neilson, J. R. Anharmonicity and Octahedral Tilting in Hybrid Vacancy-Ordered Double Perovskites. Chem. Mater. 2018, 30, 472–483. DOI: 10.1021/acs.chemmater.7b04516.
  • Jokar, E.; Chien, C. H.; Fathi, A.; Rameez, M.; Chang, Y. H.; Diau, E. W. G. Slow Surface Passivation and Crystal Relaxation with Additives to Improve Device Performance and Durability for Tin-Based Perovskite Solar Cells. Energy Environ. Sci. 2018, 11, 2353–2362. DOI: 10.1039/C8EE00956B.
  • Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T. W.; Shen, D.; Cao, J.; Liu, C. K.; Wang, N.; Zhu, Y.; et al. Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells . Angew. Chem. Int. Ed. Engl. 2019, 58, 806–810. DOI: 10.1002/anie.201811539.
  • Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. G. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Adv. Mater. 2019, 31, 1804835. DOI: 10.1002/adma.201804835.
  • Ng, C. H.; Nishimura, K.; Ito, N.; Hamada, K.; Hirotani, D.; Wang, Z.; Yang, F.; Likubo, S.; Shen, Q.; Yoshino, K.; et al. Role of GeI2 and SnF2 Additives for SnGe Perovskite Solar Cells. Nano Energy 2019, 58, 130–137. DOI: 10.1016/j.nanoen.2019.01.026.
  • Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M. C.; Kanatzidis, M. G. Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. J. Am. Chem. Soc. 2018, 140, 388–393. DOI: 10.1021/jacs.7b10898.
  • Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q. Low-Dimensional Perovskite Interlayer for Highly Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells. Nano Energy 2018, 49, 411–418. DOI: 10.1016/j.nanoen.2018.05.006.
  • Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. Diammonium Cations in the FASnI3 Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. Nano Energy 2018, 3, 411–418.
  • Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency. Nature 2012, 485, 486–489. DOI: 10.1038/nature11067.
  • Queisser, H. J. Slip Patterns on Boron-Doped Silicon Surfaces. J. Appl. Phys. 1961, 32, 1776–1780. DOI: 10.1063/1.1728435.
  • Sven, R. Tabulated Values of the Shockley–Queisser Limit for Single Junction Solar Cells. Solar Energy 2016, 130, 139–147.
  • Xu, P.; Chen, S. Y.; Xiang, H. J.; Gong, X. G.; Wei, S. H. Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3. Chem. Mater. 2014, 26, 6068–6072. DOI: 10.1021/cm503122j.
  • Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized through Vacancy Modulation. Adv. Mater. Weinheim. 2014, 26, 7122–7127. DOI: 10.1002/adma.201401991.
  • Heo, J. H.; Kim, J.; Kim, H.; Moon, S. H.; Im, S. H.; Hong, K. H. Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites towards Highly Efficient and Stable Lead-Free Perovskite Solar Cells. J. Phys. Chem. Lett. 2018, 9, 6024–6031. DOI: 10.1021/acs.jpclett.8b02555.
  • Zhu, P.; Chen, C.; Gu, S.; Lin, R.; Zhu, J. CsSnI3 Solar Cells via an Evaporation-Assisted Solution Method. Sol. RRL 2018, 2, 1700224. DOI: 10.1002/solr.201700224.
  • Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI3: semiconductor or Metal? High Electrical Conductivity and Strong near-Infrared Photoluminescence from a Single Material. high Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. DOI: 10.1021/ja301539s.
  • Wang, Y.; Tu, J.; Li, T.; Tao, C.; Deng, X.; Li, Z. Convenient Preparation of CsSnI3 Quantum Dots, Excellent Stability, and the Highest Performance of Lead-Free Inorganic Perovskite Solar Cells so Far. J. Mater. Chem. A 2019, 7, 7610–7683. DOI: 10.1039/C8TA10901J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.