350
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical sensing by a covalently bonded biotin–avidin couple on a silver nanoparticle modified gold electrode

&

References

  • Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A. J. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. Sensors 2016, 17, 74–100. DOI: 10.3390/s17010074.
  • Cho, H.; Kim, D. H.; Park, S. Electrochemical Biosensors: perspective on Functional Nanomaterials for on-Site Analysis. Biomater. Res. 2020, 24, 6. DOI: 10.1186/s40824-019-0181-y.
  • Dong, C.; Yang, S.; Shi, J.; Zhao, H.; Zhong, L.; Liu, Z.; Jia, B.; Wang, F. SPECT/NIRF Dual Modality Imaging for Detection of Intraperitoneal Colon Tumor with an Avidin/Biotin Pretargeting System. Sci. Rep. 2016, 6, 18905. DOI: 10.1038/srep18905.
  • Grant, B. D.; Smith, C. A.; Karvonen, K.; Kortum, R. R. Highly Sensitive Two-Dimensional Paper Network Incorporating Biotin-Streptavidin for the Detection of Malaria. Anal. Chem. 2016, 88, 2553–2557. DOI: 10.1021/acs.analchem.5b03999.
  • Khan, M.; Park, S. Y. Specific Detection of Avidin-Biotin Binding Using Liquid Crystal Droplets. Colloids Surf. B Biointerfaces 2015, 127, 241–246. DOI: 10.1016/j.colsurfb.2015.01.047.
  • Li, H.; Liu, S.; Dai, Z.; Bao, J.; Yang, X. Applications of Nanomaterials in Electrochemical Enzyme Biosensors. Sensors (Basel) 2009, 9, 8547–8561. DOI: 10.3390/s91108547.
  • Huang, X.; Du, D.; Gong, X.; Cai, J.; Tu, H.; Xu, X.; Zhang, A. Composite Assembly of Silver Nanoparticles with Avidin and Biotinylated AChE on Gold for the Pesticidal Electrochemical Sensing. Electroanalysis 2008, 20, 402–409. DOI: 10.1002/elan.200704060.
  • Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assuncao, M.; Rosa, J.; Baptista, P. V. Noble Metal Nanoparticles for Biosensing Applications. Sensors (Basel) 2012, 12, 1657–1687. DOI: 10.3390/s120201657.
  • Aziz, M. A.; Oyama, M. Nanomaterials in Electrochemical Biosensor. Adv. Mater. Res. 2014, 995, 125–143. DOI: 10.4028/www.scientific.net/AMR.995.125.
  • Prashar, D. Self-Assembled monolayers—A Review. Int. J. Chem. Technol. Res. 2012, 4, 258–265.
  • Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. DOI: 10.1016/S0956-5663(01)00115-4.
  • Golchin, J.; Golchin, K.; Alidadian, N.; Ghaderi, S.; Eslamkhah, S.; Eslamkhah, M.; Akbarzadeh, A. Nanozyme Applications in Biology and Medicine: An Overview. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 1–76. DOI: 10.1080/21691401.2017.1313268.
  • Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based Nanomaterials: Synthesis and Recent Progress in Electrochemical Sensor Applications. Talanta 2020, 206, 120210. DOI: 10.1016/j.talanta.2019.120210.
  • Cai, H.; Xu, C.; He, P.; Fang, Y. Colloid Au-Enhanced DNA Immobilization for the Electrochemical Detection of Sequence-Specific DNA. J. Electroanal. Chem. 2001, 510, 78–85. DOI: 10.1016/S0022-0728(01)00548-4.
  • Daniel, M. C.; Astruc, D. Gold Nanoparticles: assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 246–293. DOI: 10.1021/cr030698+.
  • Yu, A.; Liang, Z.; Cho, J.; Caruso, F. Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Lett. 2003, 3, 1203–1207. DOI: 10.1021/nl034363j.
  • Gu, H. Y.; Yu, A. M.; Chen, H. Y. Direct Electron Transfer and Characterization of Hemoglobin Immobilized on a Au Colloid–Cysteamine-Modified Gold Electrode. Electroanal. Chem. 2001, 516, 119–126. DOI: 10.1016/S0022-0728(01)00669-6.
  • Zhang, J.; Oyama, M. Electrocatalytic Activity of Three-Dimensional Monolayer of 3-Mercaptopropionic Acid Assembled on Gold Nanoparticle Arrays. Electrochem. Commun. 2007, 9, 459–464. DOI: 10.1016/j.elecom.2006.10.015.
  • Lin, C. C.; Chen, L. C.; Huang, C. H.; Ding, S. J.; Chang, C. C.; Chang, H. C. Development of the Multi-Functionalized Gold Nanoparticles with Electrochemical-Based Immunoassay for Protein a Detection. J. Electroanal. Chem. 2008, 619–620, 39–45. DOI: 10.1016/j.jelechem.2008.03.014.
  • Ouerghi, O.; Touhami, A.; Jaffrezic-Renault, N.; Martelet, C.; Ouada, H. B.; Cosnier, S. Impedimetric Immunosensor Using Avidin-Biotin for Antibody Immobilization. Bioelectrochemistry 2002, 56, 131–133. DOI: 10.1016/S1567-5394(02)00029-4.
  • Ding, S. J.; Chang, B. W.; Wu, C. C.; Lai, M. F.; Chang, H. C. Electrochemical Evaluation of Avidin-Biotin Interaction on Self-Assembled Gold Electrodes. Electrochim. Acta 2005, 50, 3660–3666. DOI: 10.1016/j.electacta.2005.01.011.
  • You, C. C.; De, M.; Rotello, V. M. Monolayer-Protected Nanoparticle-Protein Interactions. Curr. Opin. Chem. Biol. 2005, 9, 639–646. DOI: 10.1016/j.cbpa.2005.09.012.
  • Shang, B. B.; Li, X.; Zhang, X. R.; Huang, W. S.; Qi, B. P.; Zhou, C. H. An Immunomagnetic Separation and Bifunctional Au Nanoparticle Probe-Based Multiamplification Electrochemical Strategy. Bioelectrochemistry 2019, 129, 278–285. DOI: 10.1016/j.bioelechem.2019.06.005.
  • Gallay, P.; Eguilaz, M.; Rivas, G. Designing Electrochemical Interfaces Based on Nanohybrids of Avidin Functionalized-Carbon Nanotubes and Ruthenium Nanoparticles as Peroxidase-like Nanozyme with Supramolecular Recognition Properties for Site-Specific Anchoring of Biotinylated Residues. Biosens. Bioelectron. 2020, 148, 111764. DOI: 10.1016/j.bios.2019.111764.
  • Jimenez-Falcao, S.; Parra-Nieto, J.; Pérez-Cuadrado, H.; Martínez-Máñez, R.; Martínez-Ruiz, P.; Villalonga, R. Avidin-Gated N-Morpholino Ethane Sulfonic Acid Monohydrateoporous Silica Nanoparticles for Signal Amplification in Electrochemical Biosensor. Electrochem. Commun. 2019, 108, 106556. DOI: 10.1016/j.elecom.2019.106556.
  • Geagea, R.; Aubert, P. H.; Banet, P.; Sanson, N. Signal Enhancement of Electrochemical Biosensors via Direct Electrochemical Oxidation of Silver Nanoparticle Labels Coated with Zwitterionic polymers. Chem. Commun. (Camb.) 2015, 51, 402–405. DOI: 10.1039/c4cc07474b.
  • Kar, P.; Tatard, F.; Lamblin, G.; Banet, P.; Aubert, P. H.; Plesse, C.; Chevrot, C. Silver Nanoparticles to Improve Electron Transfer at Interfaces of Gold Electrodes Modified by Biotin or Avidin. Electroanal. Chem. 2013, 692, 17–25. DOI: 10.1016/j.jelechem.2012.12.020.
  • Yonezawa, T.; Kunitake, T. Practical Preparation of Anionic Mercapto Ligandstabilized Gold Nanoparticles and Their Immobilization. Colloidal Surf. A Physicochem. Eng. Asp. 1999, 149, 193–199. DOI: 10.1016/S0927-7757(98)00309-4.
  • Sivanesan, A.; Kannan, P.; John, S. A. Electrocatalytic Oxidation of Ascorbic Acid Using a Single Layer of Gold Nanoparticles Immobilized on 1,6-Hexanedithiol Modified Gold Electrode. Electrochim. Acta 2007, 52, 8118–8124. DOI: 10.1016/j.electacta.2007.07.020.
  • Riskin, M.; Tel-Vered, R.; Willner, I. Thermo-Switchable Charge Transport and Electrocatalysis Using Metal–Ion-Modified pNIPAM-Functionalized Electrodes. Adv. Funct. Mater. 2009, 19, 2474–2480. DOI: 10.1002/adfm.200900268.
  • Long, Y.; Nie, L.; Chen, J.; Yao, S. Piezoelectric Quartz Crystal Impedance and Electrochemical Impedance Study of HSA–Diazepam Interaction by Nanogoldstructured Sensor. J. Colloidal Interfacial Sci. 2003, 263, 106–112. DOI: 10.1016/S0021-9797(03)00141-3.
  • Katz, E.; Willner, I.; Wang, J. Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles. Electroanalysis 2004, 16, 19–44. DOI: 10.1002/elan.200302930.
  • Pei, R.; Cheng, Z.; Wang, E.; Yang, X. Amplification of Antigen-Antibody Interactions Based on Biotin Labeled Protein-Streptavidin Network Complex Using Impedance Spectroscopy. Biosens. Bioelectron. 2001, 16, 355–361. DOI: 10.1016/S0956-5663(01)00150-6.
  • Zhang, H.; Li, P.; Han, X. A Charge-Labeled Electrochemical Immunosensor: Enhanced Sensitivity by Electrostatic Interaction of the Electrode/Solution Interface. Ionics 2018, 24, 589–596. DOI: 10.1007/s11581-017-2199-2.
  • Luczak, T. A Nanogold Supported Inorganic/Organic Hybrid 3D Sensor for Electrochemical Quantification of Propranolol—Effective Antagonist of β-Adrenergic Receptors. Ionics 2019, 25, 5515–5525. DOI: 10.1007/s11581-019-03113-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.