432
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Determination of cobalt in food by magnetic solid-phase extraction (MSPE) preconcentration by polyaniline (PANI) and polythiophene (PTH) coated magnetic nanoparticles (MNPs) and microsample injection system – flame atomic absorption spectrometry (MIS-FAAS)

ORCID Icon

References

  • Kudesia, V. P. Water Pollution, Pragati Prakashan Publications: Meerut, 1990.
  • Sayadi, M. H.; Rezaei, M. R.; Rezaei, A. Fraction Distribution and Bioavailability of Sediment Heavy Metals in the Environment Surrounding MSW Landfill: A Case Study. Environ. Monit. Assess. 2015, 187, 4110. DOI: 10.1007/s10661-014-4110-1.
  • Stoica, A.-I.; Peltea, M.; Baiulescu, G.-E.; Ionica, M. Determination of Cobalt in Pharmaceutical Products. J. Pharm. Biomed. 2004, 36, 653–656. DOI: 10.1016/j.jpba.2004.07.030.
  • Walther, B.; Schmid, A. Effect of Fermentation on Vitamin Content in Food. In Fermented Foods in Health and Disease Prevention, Chapter 7, Academic Press: London, 2017; pp. 131–157.
  • Kim, J. H.; Gibb, H. J.; Howe, P. D. Cobalt and inorganic cobalt compounds. Chemical Safety Team and International Programme on Chemical Safety; World Health Organization: Geneva, 2006.
  • Matusiewicz, H. Sample Preparation for Inorganic Trace Element Analysis. Phys. Sci. Rev. 2017, 2, 20178001.
  • Jamali, M. R.; Gholinezhad, M.; Balarostaghi, S.; Rahnama, R.; Rahimi, S. H. A. Development of a Cloud-Point Extraction Method for Cobalt Determination in Natural Water Samples. J. Chem 2013, 2013, 1–7. DOI: 10.1155/2013/615175.
  • Baghban, N.; Shabani, A. M. H.; Dadfarnia, S.; Jafari, A. A. Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Cobalt after Cloud Point Extraction as 2-[(2-Mercaptophenylimino)Methyl]Phenol Complex. J. Braz. Chem. Soc. 2009, 20, 832–838. DOI: 10.1590/S0103-50532009000500005.
  • Amjadi, M.; Manzoori, J. L.; Abulhassani, J. Ionic Liquid-Based, Single-Drop Microextraction for Preconcentration of Cobalt before Its Determination by Electrothermal Atomic Absorption Spectrometry. J. Aoac Int. 2010, 93, 985–991. DOI: 10.1093/jaoac/93.3.985.
  • Hasanpour, F.; Hadadzadeh, H.; Taei, M.; Nekouei, M.; Mozafari, E. Sensitive Spectrophotometric Determination of Co(II) Using Dispersive liquid-liquid micro-extraction method in soil samples . Environ. Monit. Assess. 2016, 188, 265. DOI: 10.1007/s10661-016-5263-x.
  • Sorouraddin, S. M.; Nouri, S. Simultaneous Temperature-Assisted Dispersive Liquid–Liquid Microextraction of Cobalt, Copper, Nickel and Zinc Ions from High-Volume Water Samples and Determination by Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods 2016, 8, 1396–1404. DOI: 10.1039/C5AY03288A.
  • Memon, Z. M.; Yilmaz, E.; Soylak, M. Switchable Solvent Based Green Liquid Phase Microextraction Method for Cobalt in Tobacco and Food Samples Prior to Flame Atomic Absorption Spectrometric Determination. J. Mol. Liq. 2017, 229, 459–464. DOI: 10.1016/j.molliq.2016.12.098.
  • Elyas Sodan, N.; Hol, A.; Caylak, O.; Elci, L. Use of Fe3O4 Magnetic Nanoparticles Coated with Polythiophene for Simultaneous Preconcentration of Cu(II), Co (II), Cd (II), Ni (II) and Zn(II) Ions Prior to Their Determination by MIS-FAAS. Acsi. 2020, 67, 375–385. DOI: 10.17344/acsi.2018.4636.
  • Mohammadi, S. Z.; Hamidian, H.; Karimzadeh, L.; Moeinadini, Z. Simultaneous Extraction of Trace Amounts of Cobalt, Nickel and Copper Ions Using Magnetic Iron Oxide Nanoparticles without Chelating Agent. J. Anal. Chem. 2013, 68, 953–958. DOI: 10.1134/S1061934813110142.
  • Camba, M.; Romero, V.; Lavilla, I.; Bendicho, C. In Situ Growth of Fe3O4 Nanoparticles for Dispersive Magnetic Micro-Solid Phase Extraction of Cadmium Followed by ETAAS Detection. Anal. Methods 2015, 7, 1154–1160. DOI: 10.1039/C4AY02522A.
  • Giakisikli, G.; Anthemidis, A. N. Magnetic Materials as Sorbents for metal/metalloid preconcentration and/or separation. A review. Anal. Chim. Acta. 2013, 789, 1–16. DOI: 10.1016/j.aca.2013.04.021.
  • Hemmati, M.; Rajabi, M.; Asghar, A. Magnetic Nanoparticle Based Solid-Phase Extraction of Heavy Metal Ions: A Review on Recent Advances. Microchim. Acta 2018, 185, 160. DOI: 10.1007/s00604-018-2670-4.
  • Habila, M. A.; ALOthman, Z. A.; El-Toni, A. M.; Al-Tamrah, S. A.; Soylak, M.; Labis, J. P. Carbon-Coated Fe3O4 Nanoparticles with Surface Amido Groups for Magnetic Solid Phase Extraction of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) Prior to Their Quantitation by ICP-MS. Microchim. Acta 2017, 184, 2645–2651. DOI: 10.1007/s00604-017-2283-3.
  • Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: synthesis and Surface Functionalization Strategies. Nanoscale Res Lett 2008, 3, 397–415. DOI: 10.1007/s11671-008-9174-9.
  • Wierucka, M.; Biziuk, M. Application of Magnetic Nanoparticles for Magnetic Solid-Phase Extraction in Preparing Biological, Environmental and Food Samples. Trends in Anal. Chem 2014, 59, 50–58. DOI: 10.1016/j.trac.2014.04.007.
  • Elci, S. G. A Magnetic Solid-Phase Extraction Method Using Fe3O4@coPANI-PTH for Microsample Injection System-Flame Atomic Absorption Spectrometric Determination of Nickel and Copper in Soft Drinks and Spice Samples. Int. J. Environ. Anal. Chem. 2020, 1–15. DOI: 10.1080/03067319.2020.1747615.
  • Mahmud, H. N. M. E.; Huq, A. K. O.; Yahya, R. B. The Removal of Heavy Metal Ions from Wastewater/Aqueous Solution Using Polypyrrolebased Adsorbents: A Review. RSC Adv. 2016, 6, 14778–14791. DOI: 10.1039/C5RA24358K.
  • Molaei, K.; Bagheri, H.; Asgharinezhad, A. A.; Ebrahimzadeh, H.; Shamsipur, M. SiO2-Coated Magnetic Graphene Oxide Modified with Polypyrrole-Polythiophene: A Novel and Efficient Nanocomposite for Solid Phase Extraction of Trace Amounts of Heavy Metals. Talanta 2017, 167, 607–616. DOI: 10.1016/j.talanta.2017.02.066.
  • Jalilian, N.; Ebrahimzadeh, H.; Asgharinezhad, A. A.; Molaei, K. Extraction and Determination of Trace Amounts of Gold(III), Palladium(II), Platinum(II) and Silver(I) with the Aid of Amagnetic Nanosorbent Made from Fe3O4-Decorated and Silica-Coated Graphene Oxide Modified with a Polypyrrole-Polythiophene Copolymer. Microchim. Acta 2017, 184, 2191–2200. DOI: 10.1007/s00604-017-2170-y.
  • Kera, N. H.; Bhaumik, M.; Pillay, K.; Ray, S. S.; Maity, A. Selective Removal of Toxic Cr(VI) from Aqueous Solution by Adsorption Combined with Reduction at a Magnetic Nanocomposite Surface. J Colloid Interface Sci 2017, 503, 214–228. DOI: 10.1016/j.jcis.2017.05.018.
  • Bhaumik, M.; Arjun Maity, A.; Srinivasu, V. V.; Onyango, M. S. Removal of Hexavalent Chromium from Aqueous Solution Using Polypyrrole-Polyaniline Nanofibers. Chem. Eng. J 2012, 181/182, 323–333. DOI: 10.1016/j.cej.2011.11.088.
  • Baig, J. A.; Hol, A.; Akdogan, A.; Kartal, A. A.; Divrikli, U.; Gul Kazi, T.; Elci, L. A Novel Strategy for Chromium Speciation at Ultra-Trace Level by Microsample Injection Flame Atomic Absorption Spectrophotometry. J. Anal. At. Spectrom. 2012, 27, 1509–1517. DOI: 10.1039/c2ja30107e.
  • Martin, M.; Salazar, P.; Villalonga, R.; Campuzano, S.; Pingarron, J. M.; Gonzalez-Mora, J. L. Preparation of Core-Shell Fe3O4@Poly(Dopamine) Magnetic Nanoparticles for Biosensor Construction. J Mater Chem B 2014, 2, 739–746. DOI: 10.1039/c3tb21171a.
  • Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characterization of Amino-Silane Modified Superparamagnetic Silica Nanospheres. J. Magn. Magn. Mater. 2004, 270, 1–6. DOI: 10.1016/j.jmmm.2003.07.006.
  • Szymczycha-Madeja, A.; Welna, M. Evaluation of a Simple and Fast Method for the Multi-Elemental Analysis in Commercial Fruit Juice Samples Using Atomic Emission Spectrometry. Food Chem. 2013, 141, 3466–3472. DOI: 10.1016/j.foodchem.2013.06.067.
  • Elci, S. G.; Yan, B.; Kim, S. T.; Saha, K.; Jiang, Y.; Klemmer, G. A.; Moyano, D. F.; Tonga, G. Y.; Rotello, V. M.; Vachet, R. W. Quantitative Imaging of 2 nm Monolayer-Protected Gold Nanoparticle Distributions in Tissues Using Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS). Analyst 2016, 141, 2418–2425. DOI: 10.1039/c6an00123h.
  • Arpa, Ç.; Arıdaşır, I. Ultrasound Assisted Ion Pair Based Surfactant-Enhanced Liquid-Liquid Microextraction with Solidification of Floating Organic Drop Combined with Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Nickel and Cobalt Ions in Vegetable and Herb Samples. Food Chem. 2019, 284, 16–22. DOI: 10.1016/j.foodchem.2019.01.092.
  • Zaman, B. T.; Erulaş, A. F.; Chormey, D. S.; Bakirdere, S. Combination of Stearic Acid Coated Magnetic Nanoparticle Based Sonication Assisted Dispersive Solid Phase Extraction and Slotted Quartz Tube-Flame Atomic Absorption Spectrophotometry for the Accurate and Sensitive Determination of Lead in Red Pepper Samples and Assessment of Green Profile. Food Chem. 2020, 303, 125396. DOI: 10.1016/j.foodchem.2019.125396.
  • Limchoowong, N.; Sricharoen, P.; Areerob, Y.; Nuengmatcha, P.; Sripakdee, T.; Techawongstien, S.; Chanthai, S. Preconcentration and Trace Determination of Copper (II) in Thai Food Recipes Using Fe3O4@Chi-GQDs nanocomposites as a new magnetic adsorbent. Food Chem. 2017, 230, 388–397. DOI: 10.1016/j.foodchem.2017.03.066.
  • Apak, R.; Hizal, J.; Ustaer, C. Correlation between the Limiting pH of Metal Ion Solubility and Total Metal Concentration. J. Colloid Interface Sci. 1999, 211, 185–192. DOI: 10.1006/jcis.1998.5906.
  • Maquieira, A.; Elmahadi, H. A. M.; Puchades, R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry. Anal. Chem. 1994, 66, 3632–3638. DOI: 10.1021/ac00093a016.
  • Tizro, S.; Baseri, H. Removal of Cobalt Ions from Contaminated Water Using Magnetite Based Nanocomposites: Effects of Various Parameters on the Removal Efficiency. J. Water Environ. Nanotechnol 2017, 2, 174–185.
  • Kecili, R.; Hussain, C. M. Chapter 4 - Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography, Elsevier: Amsterdam, 2018; pp. 89–115
  • Jain, P.; Varshney, S.; Srivastava, S. Site-Specific Functionalization for Chemical Speciation of Cr(III) and Cr(VI) Using Polyaniline Impregnated Nanocellulose Composite: equilibrium, Kinetic, and Thermodynamic Modeling. Appl Water Sci. 2017, 7, 1827–1839. DOI: 10.1007/s13201-015-0356-1.
  • Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 6th ed. Pearson Education Limited: Harlow, 2010.
  • Analytical Methods Committee. Recommendations for the Definition, Estimation and Use of the Detection Limit. Analyst 1987, 112, 199–204. DOI: 10.1039/an9871200199.
  • Meyve suyu tüketiminde ABD ve AB'nin çok gerisindeyiz. https://www.hurriyet.com.tr/ekonomi/meyve-suyu-tuketiminde-abd-ve-abnin-cok-gerisindeyiz-40857579 (accessed July 7, 2020).
  • Türkiye'de 1 yılda tüketilen meyve suyu miktarı 1 milyar litre. https://www.trthaber.com/haber/ekonomi/turkiyede-1-yilda-tuketilen-meyve-suyu-miktari-1-milyar-litre-461093.html (accessed July 7, 2020).
  • Evaluation of certain food additives and contaminants (Forty-first report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 837., 1993.
  • EC - European Council. Regulation EEC 2356/91 Amending Council Regulation EEC 2392/89. Official Journal of the European Committees 1991, L261, 1–2.,
  • Basgel, S.; Erdemoglu, S. B. Determination of Mineral and Trace Elements in Some Medicinal Herbs and Their Infusions Consumed in Turkey. Sci. Total Environ 2006, 359, 82–89. DOI: 10.1016/j.scitotenv.2005.04.016.
  • National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances. 10th ed. National Academies Press, Washington, DC, 1989.
  • Gaya, U. I.; Ikechukwu, S. A. Heavy Metal Contamination of Selected Spices Obtained from Nigeria. JASEM 2016, 20, 681–688. DOI: 10.4314/jasem.v20i3.23.
  • Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, 2010.
  • ATSDR, Agency for Toxic Substances and Disease Registry (ATSDR) Public Health Statement for Cobalt, http://www.atsdr.cdc.gov/PHS/PHS.asp?id=371&tid=64. (accessed July 7, 2020).
  • Shegefti, S.; Mehdinia, A.; Shemirani, F. Preconcentration of Cobalt(II) Using Polythionine-Coated Fe3O4 Nanocomposite Prior Its Determination by AAS. Microchim. Acta2016, 183, 1963–1970. DOI: 10.1007/s00604-016-1837-0.
  • Shakerian, F.; Chelongar, Y.; Shabani, A. M. H.; Dadfarnia, S. Mixed Hemimicelles Solid Phase Extraction Based on Sodium Dodecyl Sulphate-Coated Nano-Magnets Fe3O4 for the Simultaneous Separation and Preconcentration of Cobalt and Nickel. Microchem. J. 2019, 146, 234–238. DOI: 10.1016/j.microc.2019.01.004.
  • Caylak, O. Speciation of Mercury with Polymeric Resin and Use of Magnetic Nanoparticles for Solid Phase Extraction of Trace Elements (Polimerik reçine ile cıva türlemesi ve manyetik nanoparçacık kullanımıyla eser elementlerin katı faz ekstraksiyonu). Ph.D. Dissertation, 2019. Pamukkale University, Denizli, Turkey.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.