327
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Low-cost multichannel system with disposable pH sensors for monitoring bacteria metabolism and the response to antibiotics

, , &

References

  • Vouga, M.; Greub, G. Emerging Bacterial Pathogens: The past and Beyond. Clin. Microbiol. Infect. 2016, 22, 12–21. DOI: 10.1016/j.cmi.2015.10.010.
  • Spijk, J. N.; Schmitt, S.; Schoster, A. Infections Caused by Multidrug-Resistant Bacteria in an Equine Hospital (2012–2015). Equine Vet. Educ. 2019, 31, 653–658. DOI: 10.1111/eve.12837.
  • World Health Organization, Antimicrobial Resistance Global Report on Surveillance, 2014. https://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed Dec 1, 2019).
  • Reardon, S. Phage Therapy Gets Revitalized. Nature 2014, 510, 15–16. DOI: 10.1038/510015a.
  • Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; et al. Antibiotic Resistance-the Need for Global Solutions. Lancet. Infect. Dis. 2013, 13, 1057–1098. DOI: 10.1016/S1473-3099(13)70318-9.
  • Gowers, S. A. N.; Freeman, D. M. E.; Rawson, T. M.; Rogers, M. L.; Wilson, R. C.; Holmes, A. H.; Cass, A. E.; O'Hare, D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens. 2019, 4, 1072–1080. DOI: 10.1021/acssensors.9b00288.
  • Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. DOI: 10.1086/647952.
  • van Belkum, A.; Bachmann, T. T.; Lüdke, G.; Lisby, J. G.; Kahlmeter, G.; Mohess, A.; Becker, K.; Hays, J. P.; Woodford, N.; Mitsakakis, K.; JPIAMR AMR-RDT Working Group on Antimicrobial Resistance and Rapid Diagnostic Testing.; et al. Developmental Roadmap for Antimicrobial Susceptibility Testing Systems. Nat. Rev. Microbiol. 2019, 17, 51–56. DOI: 10.1038/s41579-018-0098-9.
  • Doern, G. V. Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2011, 49, S4. DOI: 10.1128/JCM.00803-11.
  • Puttaswamy, S.; Gupta, S.; Regunath, H.; Smith, L.; Sengupta, S. A Comprehensive Review of the Present and Future Antibiotic Susceptibility Testing (AST) Systems. Arch. Clin. Microb. 2018, 9, 1–9. DOI: 10.4172/1989-8436.100083.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. DOI: 10.1016/j.jpha.2015.11.005.
  • Spiegelman, D.; Whissell, G.; Greer, C. W. A Survey of the Methods for the Characterization of Microbial Consortia and Communities. Can. J. Microbiol. 2005, 5, 1355–1386. DOI: 10.1139/w05-003.
  • Jenkins, S. G.; Schuetz, A. N. Current Concepts in Laboratory Testing to Guide Antimicrobial Therapy. Mayo Clin. Proc. 2012, 8, 7290–7308. DOI: 10.1016/j.mayocp.2012.01.007.
  • Athamanolap, P.; Hsieh, K.; Chen, L.; Yang, S.; Wang, T.-H. Integrated Bacterial Identification and Antimicrobial Susceptibility Testing Using PCR and High-Resolution Melt. Anal. Chem. 2017, 8, 911529–911536. DOI: 10.1021/acs.analchem.7b02809.
  • Mishra, P.; Singh, D.; Mishra, K. P.; Kaur, G.; Dhull, N.; Tomar, M.; Gupta, V.; Kumar, B.; Ganju, L. Rapid Antibiotic Susceptibility Testing by Resazurin Using Thin Film Platinum as a Bio-Electrode. J. Microbiol. Methods. 2019, 162, 69–76. DOI: 10.1016/j.mimet.2019.05.009.
  • Jalali, F.; Ellett, F.; Irimia, D. Rapid Antibiotic Sensitivity Testing in Microwell Arrays. Technology (Singap World Sci). 2017, 5, 107–114. DOI: 10.1142/s2339547817500030.
  • Guliy, O. I.; Bunin, V. D.; Korzhenevich, V. I.; Volkov, A. A.; Ignatov, O. V. Electrooptical Analysis of Microbial Cell Suspensions forDetermination of Antibiotic Resistance. Cell Biochem. Biophys. 2016, 74, 537–544. DOI: 10.1007/s12013-016-0762-5.
  • Zhang, N.; Wang, Y.; Leng, S.; Xu, S.; Zhang, L.; Wang, Q.; Zhang, Q.; Hu, H.-Y. An Efficient Fluorescence Sensor for Nitroreductase Selective Imaging Based on Intramolecular Photoinduced Electron Transfer. Talanta 2019, 205, 120133–120133. DOI: 10.1016/j.talanta.2019.120133.
  • Brosel-Oliu, S.; Mergel, O.; Uria, N.; Abramova, N.; van Rijn, P.; Bratov, A. 3D Impedimetric Sensors as a Tool for Monitoring Bacterial Response to Antibiotics. Lab Chip. 2019, 19, 1436–1447. DOI: 10.1039/C8LC01220B.
  • Pang, Y.; Wan, N.; Shi, L.; Wang, C.; Sun, Z.; Xiao, R.; Wang, S. Dual-Recognition Surface-Enhanced Raman scattering(SERS)Biosensor for Pathogenic Bacteria Detection by using Vancomycin-SERS Tags and Aptamer-Fe3O4@Au. Anal. Chim. Acta. 2019, 1077, 288–296. DOI: 10.1016/j.aca.2019.05.059.
  • Stevenson, H. S.; Shetty, S. S.; Thomas, N. J.; Dhamu, V. N.; Bhide, A.; Prasad, S. Ultrasensitive and Rapid-Response Sensor for the Electrochemical Detection of Antibiotic Residues within Meat Samples. ACS Omega. 2019, 4, 6324–6330. DOI: 10.1021/acsomega.8b03534.
  • Sabhachandani, P.; Sarkar, S.; Zucchi, P. C.; Whitfield, B. A.; Kirby, J. E.; Hirsch, E. B.; Konry, T. Integrated Microfluidic Platform for Rapid Antimicrobial Susceptibility Testing and Bacterial Growth Analysis Using Bead-Based Biosensor via Fluorescence Imaging. Microchim. Acta 2017, 18, 4619–4628. DOI: 10.1007/s00604-017-2492-9.
  • Sun, H.; Chan, C.-W.; Wang, Y.; Yao, X.; Mu, X.; Lu, X.; Zhou, J.; Cai, Z.; Ren, K. Reliable and Reusable Whole Polypropylene Plastic Microfluidic Devices for a Rapid, Low-Cost Antimicrobial Susceptibility Test. Lab Chip. 2019, 19, 2915–2924. DOI: 10.1039/c9lc00502a.
  • Ibarlucea, B.; Rim, T.; Baek, C. K.; De Visser, J. A. G. M.; Baraban, L.; Cuniberti, G. Nanowire Sensors Monitor Bacterial Growth Kinetics and Response to Antibiotics. Lab Chip. 2017, 17, 4283–4293. DOI: 10.1039/c7lc00807d.
  • Hassan, R. Y. A.; Mekawy, M. M.; Ramnani, P.; Mulchandani, A. Monitoring of Microbial Cell Viability Using Nanostructured Electrodes Modified with Graphene/Alumina Nanocomposite. Biosens. Bioelectron. 2017, 9, 857–862. DOI: 10.1016/j.bios.2017.01.060.
  • Ebrahimi, A.; Alam, M. A. Droplet-Based Non-Faradaic Impedance Sensors for Assessment of Susceptibility of Escherichia Coli to Ampicillin in 60 Min. Biomed. Microdev. 2017, 19, 27DOI: 10.1007/s10544-017-0165-4.
  • Webster, T. A.; Sismaet, H. J.; Chan, I. J.; Goluch, E. D. Electrochemically Monitoring the Antibiotic Susceptibility of Pseudomonas Aeruginosa Biofilms. Analyst 2015, 140, 7195–7201. DOI: 10.1039/C5AN01358E.
  • Ges, I. A.; Ivanov, B. L.; Werdich, A. A.; Baudenbacher, F. J. Differential pH Measurements of Metabolic Cellular Activity in nl Culture Volumes Using Microfabricated Iridium Oxide Electrodes. Biosens. Bioelectron. 2007, 22, 1303–1310. DOI: 10.1016/j.bios.2006.05.033.
  • Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Rapid Antibiotic Susceptibility Testing in a Microfluidic pH sensor. Anal. Chem. 2013, 85, 2787–2794. DOI: 10.1021/ac303282j.
  • Głab, S.; Hulanicki, A.; Edwall, G.; Ingman, F. Metal-Metal Oxide and Metal Oxide Electrodes as pH Sensors. Crit. Rev. Anal. Chem. 1989, 21, 29–47. DOI: 10.1080/10408348908048815.
  • Kurzweil, P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook. Sensors (Basel) 2009, 9, 4955–4985. DOI: 10.3390/s90604955.
  • Bobrov, P. V.; Tarantov, Y. A.; Krause, S.; Moritz, W. Chemical Sensitivity of an ISFET with Ta2O5 Membrane in Strong Acid and Alkaline Solutions. Sens.Actuat. B 1991, 3, 75–81. DOI: 10.1016/0925-4005(91)85010-G.
  • Gimmel, P.; Schierbaum, K. D.; Göpel, W.; van den Vlekkert, H. H.; De Rooij, N. F. Reduced Light Sensibility in Optimized Ta2O5-ISFET Structures. Sens. Actuat. B 1991, 4, 135–140. DOI: 10.1016/0925-4005(91)80188-P.
  • Uria, N.; Abramova, N.; Bratov, A.; Muñoz-Pascual, F. X.; Baldrich, E. Miniaturized Metal Oxide pH Sensors for Bacteria Detection. Talanta 2016, 14, 364–369. DOI: 10.1016/j.talanta.2015.10.011.
  • Nordmann, P.; Poirel, L.; Mueller, L. Rapid Detection of Fosfomycin Resistance in Escherichia Coli. J. Clin. Microbiol. 2019, 57, e01531–18. DOI: 10.1128/JCM.01531-18.
  • Chandra, A.; Singh, N. Bacterial Growth Sensing in Microgels Using pH-Dependent Fluorescence Emission. Chem. Commun. (Camb.) 2018, 54, 1643–1646. DOI: 10.1039/c7cc08678d.
  • Shrivastava, A.; Gupta, V. B. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21–25. DOI: 10.4103/2229-5186.79345.
  • Reimer, L. G.; Stratton, C. W.; Reller, L. B. Minimum Inhibitory and Bactericidal Concentrations of 44 Antimicrobial Agents against Three Standard Control Strains in Broth with and without Human Serum. Antimicrob. Agents Chemother. 1981, 19, 1050–1055. DOI: 10.1128/aac.19.6.1050.
  • Fass, R. J.; Barnishan, J. Minimal Inhibitory Concentrations of 34 Antimicrobial Agents for Control Strains Escherichia Coli ATCC 25922 and Pseudomonas Aeruginosa ATCC 27853. Antimicrob. Agents Chemother. 1979, 16, 622–624. DOI: 10.1128/AAC.16.5.622.
  • Schnappinger, D.; Hillen, W. Tetracyclines: Antibiotic Action, Uptake, and Resistance Mechanisms. Arch. Microbiol. 1996, 165, 359–369. DOI: 10.1007/s002030050339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.