123
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimized protocol for the preparation of multi-walled carbon nanotube:polystyrene transducers for electrochemical sensing

ORCID Icon & ORCID Icon

References

  • Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. DOI: 10.1002/smll.200400118.
  • Salavagione, H. J.; Díez-Pascual, A. M.; Lázaro, E.; Vera, S.; Gómez-Fatou, M. A. Chemical Sensors Based on Polymer Composites with Carbon Nanotubes and Graphene: The Role of the Polymer. J. Mater. Chem. A. 2014, 2, 14289–14328. DOI: 10.1039/C4TA02159B.
  • Barsan, M. M.; Ghica, M. E.; Brett, C. M. A. Electrochemical Sensors and Biosensors Based on Redox Polymer/Carbon Nanotube Modified Electrodes: A Review. Anal. Chim. Acta. 2015, 881, 1–23. DOI: 10.1016/j.aca.2015.02.059.
  • Sireesha, M.; Babu, V. J.; Kiran, A. S. K.; Ramakrishna, S. A Review on Carbon Nanotubes in Biosensor Devices and Their Applications in Medicine. Nanocomposites 2018, 4, 36–57. DOI: 10.1080/20550324.2018.1478765.
  • Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. DOI: 10.1021/acs.chemrev.8b00340.
  • Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube - A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sens. Int 2020, 1, 100003. DOI: 10.1016/j.sintl.2020.100003.
  • Rahman, M. M.; Asiri, A. M. Introductory Chapter: Carbon Nanotubes and Their Applications. In Carbon Nanotubes – Recent Progress; Rahman, M. M., Ed.; IntechOpen Limited: London, UK, 2018; pp. 3–8. DOI: 10.5772/intechopen.75738.
  • Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. DOI: 10.1186/s11671-019-3046-3.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998.
  • Bekyarova, E.; Haddon, R. C.; Parpura, V. Biofunctionalization of Carbon Nanotubes. In Nanotechnologies for the Life Sciences, Vol. 1 Biofunctionalization of Nanomaterials; Kumar, C. S. S. R., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2005; pp. 41–71. DOI: 10.1002/9783527610419.ntls0002.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI: 10.1021/cr050569o.
  • Khan, W.; Sharma, R.; Saini, P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. In Carbon Nanotubes – Current Progress of Their Polymer Composites; Berber, M., Ed.; IntechOpen Limited: London, UK, 2016; pp. 1–46. DOI: 10.5772/62497.
  • Harris, P. J. F. Carbon Nanotube Composites. Int. Mater. Rev. 2004, 49, 31–43. DOI: 10.1179/095066004225010505.
  • Du, J.-H.; Bai, J.; Cheng, H.-M. The Present Status and Key Problems of Carbon Nanotube Based Polymer Composites. Express Polym. Lett. 2007, 1, 253–273. DOI: 10.3144/expresspolymlett.2007.39.
  • Kaseem, M.; Hamad, K.; Ko, Y. G. Fabrication and Materials Properties of Polystyrene/Carbon Nanotube (PS/CNT) Composites: A Review. Eur. Polym. J 2016, 79, 36–62. DOI: 10.1016/j.eurpolymj.2016.04.011.
  • Mitchell, G. R.; Davis, F. J.; Mohan, S.; Nazhipkyzy, M. Highly Anisotropic Polymer Composites Based on Carbon Nanotubes. In Carbon Nanotubes – Recent Progress; Rahman, M. M., Ed.; IntechOpen Limited: London, UK, 2018; pp. 127–146. DOI: 10.5772/intechopen.71533.
  • Bal, S.; Samal, S. S. Carbon Nanotube Reinforced Polymer Composites–a State of the Art. Bull. Mater. Sci. 2007, 30, 379–386. DOI: 10.1007/s12034-007-0061-2.
  • Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite. Science 1994, 265, 1212–1214. DOI: 10.1126/science.265.5176.1212.
  • HDIN Research 2019. Available at: https://www.hdinresearch.com/news/31.
  • Mendoza, E.; Orozco, J.; Jiménez-Jorquera, C.; González-Guerrero, A. B.; Calle, A.; Lechuga, L. M.; Fernández-Sánchez, C. Scalable Fabrication of Immunosensors Based on Carbon Nanotube Polymer Composites. Nanotechnology 2008, 19, 075102. DOI: 10.1088/0957-4484/19/7/075102.
  • Mendoza, E.; Orozco, J.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Low-Cost High-Sensitivity Immunosensors Based on Carbon Nanotube – Polymer Composites. ECS Meeting Abstract (216th ECS Meeting) 2009, MA2009-02, Abstract #2835 (1pp). DOI: 10.1149/MA2009-02/37/2835.
  • Fernández-Sánchez, C.; Pellicer, E.; Orozco, J.; Jiménez-Jorquera, C.; Lechuga, L. M.; Mendoza, E. Plasma-Activated Multi-Walled Carbon Nanotube-Polystyrene Composite Substrates for Biosensing. Nanotechnology 2009, 20, 335501. DOI: 10.1088/0957-4484/20/33/335501.
  • Cota-Leal, M.; García-Valenzuela, J. A.; Cabrera-German, D.; Martínez-Gil, M.; Paredes-Sotelo, E.; Sotelo-Lerma, M. Synthesis of CH3NH3PbI3–xClx Perovskite by the Three-Step Route Consisting of Chemical Solution Deposition Followed by Gas–Solid Reaction Transformations: Film Quality and Photodetector Performance Evaluation. Org. Electron. 2019, 73, 76–86. DOI: 10.1016/j.orgel.2019.05.049.
  • Cota-Leal, M.; Paredes-Sotelo, E.; Sotelo-Lerma, M.; García-Valenzuela, J. A. Effect of PbI2 Surface Treatment with DMSO Vapor on the Properties and Photodetector Characteristics of CH3NH3PbI3–xClx Perovskite Films Synthesized by a PbS-to-PbI2-to-Perovskite Sequence. Org. Electron 2020, 84, 105773. DOI: 10.1016/j.orgel.2020.105773.
  • de Gracia Villa, M.; Jiménez-Jorquera, C.; Haro, I.; Gomara, M. J.; Sanmartí, R.; Fernández-Sánchez, C.; Mendoza, E. Carbon Nanotube Composite Peptide-Based Biosensors as Putative Diagnostic Tools for Rheumatoid Arthritis. Biosens. Bioelectron. 2011, 27, 113–118. DOI: 10.1016/j.bios.2011.06.026.
  • Marken, F.; Neudeck, A.; Bond, A. M. Cyclic Voltammetry. In Electroanalytical Methods, 2nd Ed.; Scholz, F., Ed.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2010; pp. 57–106. DOI: 10.1007/978-3-642-02915-8_4.
  • Bard, A. J.; Inzelt, G.; Scholz, F. Electrochemical Dictionary, 2nd Ed.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012; pp. 184, 784. DOI: 10.1007/978-3-642-29551-5.
  • Ameur, Z. O.; Husein, M. M. Electrochemical Behavior of Potassium Ferricyanide in Aqueous and (w/o) Microemulsion Systems in the Presence of Dispersed Nickel Nanoparticles. Sep. Sci. Technol 2013, 48, 681–689. DOI: 10.1080/01496395.2012.712594.
  • Konopka, S. J.; McDuffie, B. Diffusion Coefficients of Ferri- and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry. Anal. Chem. 1970, 42, 1741–1746. DOI: 10.1021/ac50160a042.
  • Rieger, J. The Glass Transition Temperature of Polystyrene. Results of a Round Robin Test. J. Therm. Anal. 1996, 46, 965–972. DOI: 10.1007/BF01983614.
  • Wallace, J. S.; McQuillan, J. Discharge Residues from Cartridge-Operated Industrial Tools. J. Forensic Sci. Soc. 1984, 24, 495–508. DOI: 10.1016/S0015-7368(84)72329-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.