136
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optical concentration of gold nanoparticles as a new concept of analytical sensitivity

, &

References

  • de Morais, P.; Stoichev, T.; Basto, M. C. P.; Vasconcelos, M. T. S. D. Extraction and Preconcentration Techniques for Chromatographic Determination of Chlorophenols in Environmental and Food Samples. Talanta 2012, 89, 1–11. DOI: 10.1016/j.talanta.2011.12.044.
  • Ras, M. R.; Borrull, F.; Marcé, R. M. Sampling and Preconcentration Techniques for Determination of Volatile Organic Compounds in Air Samples. TrAC Trends Anal. Chem. 2009, 28, 347–361. DOI: 10.1016/j.trac.2008.10.009.
  • Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986, 11, 288–290. DOI: 10.1364/OL.11.000288.
  • Ashkin, A.; Dziedzic, J. M.; Yamane, T. Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature 1987, 330, 769–771. DOI: 10.1038/330769a0.
  • Svoboda, K.; Block, S. M. Biological Applications of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 247–285. DOI: 10.1146/annurev.bb.23.060194.001335.
  • Harada, Y.; Asakura, T. Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 1996, 124, 529–541. DOI: 10.1016/0030-4018(95)00753-9.
  • Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, 2013.
  • Polimeno, P.; Magazzù, A.; Iatì, M. A.; Patti, F.; Saija, R.; Esposti Boschi, C. D.; Donato, M. G.; Gucciardi, P. G.; Jones, P. H.; Volpe, G.; Maragò, O. M. Optical Tweezers and Their Applications. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 131–150. DOI: 10.1016/j.jqsrt.2018.07.013.
  • Junio, J.; Ng, J.; Cohen, J.; Lin, Z.; Ou-Yang, H. Ensemble Method to Measure the Potential Energy of Nanoparticles in an Optical Trap. Opt. Lett. 2011, 36, 1497–1499. DOI: 10.1364/OL.36.001497.
  • Junio, J.; Park, S.; Kim, M.-W.; Ou-Yang, H. D. Optical Bottles: A Quantitative Analysis of Optically Confined Nanoparticle Ensembles in Suspension. Solid State Commun. 2010, 150, 1003–1008. DOI: 10.1016/j.ssc.2010.01.018.
  • Svoboda, K.; Block, S. M. Optical Trapping of Metallic Rayleigh Particles. Opt. Lett. 1994, 19, 930–932. DOI: 10.1364/OL.19.000930.
  • Aizpurua, J.; Bryant, G. W.; Pelton, M. Metal-Nanoparticle Plasmonics. John Wiley & Sons, 2013.
  • Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107, 668–677. DOI: 10.1021/jp026731y.
  • Haiss, W.; T. K.; Thanh, N.; Aveyard, J. G.; Fernig, D. Determination of Size and Concentration of Gold Nanoparticles from UV-vis spectra. Anal. Chem. 2007, 79, 4215–4221. DOI: 10.1021/ac0702084.
  • Perrault, S. D.; Chan, W. C. W. Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043. DOI: 10.1021/ja907069u.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. DOI: 10.1021/cr2001178.
  • Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. DNA-Directed Assembly of Gold Nanohalo for Quantitative Plasmonic Imaging of Single-Particle Catalysis. J. Am. Chem. Soc. 2015, 137, 4292–4295. DOI: 10.1021/jacs.5b00324.
  • Young, K. L.; Ross, M. B.; Blaber, M. G.; Rycenga, M.; Jones, M. R.; Zhang, C.; Senesi, A. J.; Lee, B.; Schatz, G. C.; Mirkin, C. A. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Adv. Mater. 2014, 26, 653–659. DOI: 10.1002/adma.201302938.
  • Junio, J.; Cohen, J. A.; Ou-Yang, H. D. Osmotic Bulk Modulus of Charged Colloids Measured by Ensemble Optical Trapping. J. Phys. Chem. B. 2016, 120, 9187–9194. DOI: 10.1021/acs.jpcb.6b05608.
  • Kikutani, Y.; Mawatari, K.; Katayama, K.; Tokeshi, M.; Fukuzawa, T.; Kitaoka, M.; Kitamori, T. Flowing Thermal Lens Micro-Flow Velocimeter. Sens. Actuators B Chem. 2008, 133, 91–96. DOI: 10.1016/j.snb.2008.02.001.
  • Abbasi-Ahd, A.; Shokoufi, N.; Kargosha, K. Headspace Single-Drop Microextraction Coupled to Microchip-Photothermal Lens Microscopy for Highly Sensitive Determination of Captopril in Human Serum and Pharmaceuticals. Microchim. Acta. 2017, 184, 2403–2409. DOI: 10.1007/s00604-017-2266-4.
  • Shokoufi, N.; Abbasi-Ahd, A.; Kargosha, K. Laser Induced Thermal Lens Microscopy for Highly Sensitive Determination of Captopril. Appl. Opt. 2017, 56, E58–E63. DOI: 10.1364/AO.56.000E58.
  • Shokoufi, N.; Abbasi-Ahd, A.; Madarshahian, S. Online Monitoring of Gold Nanoparticles and Induced Aggregation by Photothermal Lens Microscopy. Instrum. Sci. Technol. 2018, 46, 93–101. DOI: 10.1080/10739149.2017.1331358.
  • Hajizadeh, F.; Reihani, S. N. S. Optimized Optical Trapping of Gold Nanoparticles. Opt. Express. 2010, 18, 551–559. DOI: 10.1364/OE.18.000551.
  • Berg-Sørensen, K.; Flyvbjerg, H. Power Spectrum Analysis for Optical Tweezers. Rev. Sci. Instrum. 2004, 75, 594–612. DOI: 10.1063/1.1645654.
  • Hansen, P. M.; Tolić-Nørrelykke, I. M.; Flyvbjerg, H.; Berg-Sørensen, K. Tweezercalib 2.0: Faster Version of MatLab Package for Precise Calibration of Optical Tweezers. Comput. Phys. Commun. 2006, 174, 518–520. DOI: 10.1016/j.cpc.2005.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.