354
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Single-channel surface electromyography (sEMG) based control of a multi-functional prosthetic hand

ORCID Icon &

References

  • Endo, T.; Kawasaki, H.; Mouri, T.; Ishigure, Y.; Shimomura, H.; Matsumura, M.; Koketsu, K. Five-Fingered Haptic Interface Robot: HIRO III. IEEE Trans. Haptics 2011, 4, 14–27. DOI: 10.1109/TOH.2010.62.
  • Belter, J. T.; Segil, J. L.; Dollar, A. M.; Weir, R. F. Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review. J. Rehabil. Res. Dev. 2013, 50, 599–618. DOI: 10.1682/jrrd.2011.10.0188.
  • Sharma, N.; Prakash, A.; Sahi, A. K.; Sharma, N.; Sharma, S. Multimodal Sensor to Measure the Concurrent Electrical and Mechanical Activity of Muscles for Controlling a Hand Prosthesis. Instrum. Sci. Technol. 2021, 49, 146–163. DOI: 10.1080/10739149.2020.1804932.
  • Prakash, A.; Sharma, S. A Low-Cost System to Control Prehension Force of a Custom-Made Myoelectric Hand Prosthesis. Res. Biomed. Eng. 2020, 36, 237–247. DOI: 10.1007/s42600-020-00064-w.
  • Prakash, A.; Sharma, S. A. Low, Cost Transradial Prosthesis Controlled by the Intention of Muscular Contraction. Phys. Eng. Sci. Med. 2021. DOI: 10.1007/s13246-021-00972-w.
  • Bebionic hand. https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/bebionic-hand/ (accessed Oct 21, 2019).
  • Michelangelo prosthetic hand. https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/ (accessed Apr 12, 2019).
  • Cipriani, C.; Controzzi, M.; Carrozza, M. C. The SmartHand Transradial Prosthesis. J. Neuroeng. Rehabil. 2011, 8, 29. DOI: 10.1186/1743-0003-8-29.
  • Al-Timemy, A. H.; Bugmann, G.; Escudero, J.; Outram, N. Classification of Finger Movements for the Dexterous Hand Prosthesis Control with Surface Electromyography. IEEE J. Biomed. Health Inform. 2013, 17, 608–618. DOI: 10.1109/jbhi.2013.2249590.
  • Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture Recognition by Instantaneous Surface EMG Images. Sci. Rep. 2016, 6, 36571. DOI: 10.1038/srep36571.
  • Khushaba, R. N.; Al-Timemy, A. H.; Al-Ani, A.; Al-Jumaily, A. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1821–1831. DOI: 10.1109/TNSRE.2017.2687520.
  • Prakash, A.; Sharma, S. Development of an Affordable Myoelectric Hand for Transradial Amputees. Int. J. Biomed. Clin. Eng. 2020, 9, 1–15. DOI: 10.4018/IJBCE.2020010101.
  • Englehart, K.; Hudgins, B.; Parker, P. A.; Stevenson, M. Classification of the Myoelectric Signal Using Time-Frequency Based Representations. Med. Eng. Phys. 1999, 21, 431–438. DOI: 10.1016/S1350-4533(99)00066-1.
  • Oskoei, M. A.; Hu, H. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Trans. Biomed. Eng. 2008, 55, 1956–1965. DOI: 10.1109/TBME.2008.919734.
  • Ahsan, M. R.; Ibrahimy, M. I.; Khalifa, O. O. 2011 Hand Motion Detection from EMG Signals by Using ANN Based Classifier for Human Computer Interaction. In: Simulation and Applied Optimization 2011 Fourth International Conference on Modeling; pp 1–6. DOI: 10.1109/ICMSAO.2011.5775536.
  • Chan, F. H.; Yang, Y. S.; Lam, F. K.; Zhang, Y. T.; Parker, P. A. Fuzzy EMG Classification for Prosthesis Control. IEEE Trans. Rehabil Eng. 2000, 8, 305–311. DOI: 10.1109/86.867872.
  • Singh, V. P.; Kumar, D. K. 2008 Classification of Low-Level Finger Contraction from Single Channel Surface EMG. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; pp 2900–2903. DOI: 10.1109/IEMBS.2008.4649809.
  • Gini, G.; Arvetti, M.; Somlai, I.; Folgheraiter, M. Acquisition and Analysis of EMG Signals to Recognize Multiple Hand Movements for Prosthetic Applications. Appl. Bionics Biomech. 2012, 9, 145–155. DOI: 10.1155/2012/792359.
  • Wang, N.; Lao, K.; Zhang, X. Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand. J. Bionic Eng. 2017, 14, 47–59. DOI: 10.1016/S1672-6529(16)60377-3.
  • Tavakoli, M.; Benussi, C.; Lourenco, J. L. Single Channel Surface EMG Control of Advanced Prosthetic Hands. Expert Syst. Appl. 2017, 79, 322–332. DOI: 10.1016/j.eswa.2017.03.012.
  • Prakash, A.; Sahi, A. K.; Sharma, N.; Sharma, S. Force Myography Controlled Multifunctional Hand Prosthesis for Upper-Limb Amputees. Biomed. Signal Process. Control 2020, 62, 102122. DOI: 10.1016/j.bspc.2020.102122.
  • Wu, Y.; Liang, S.; Zhang, L.; Chai, Z.; Cao, C.; Wang, S. Gesture Recognition Method Based on a Single-Channel SEMG Envelope Signal. J. Wireless Com. Network. 2018, 35. DOI: 10.1186/s13638-018-1046-0.
  • Maitrot, A.; Lucas, M.-F.; Doncarli, C.; Farina, D. Signal-Dependent Wavelets for Electromyogram Classification. Med. Biol. Eng. Comput. 2005, 43, 487–492. DOI: 10.1007/BF02344730.
  • Erim, Z.; Lin, W. Decomposition of Intramuscular EMG Signals Using a Heuristic Fuzzy Expert System. IEEE Trans. Biomed. Eng. 2008, 55, 2180–2189. DOI: 10.1109/TBME.2008.923915.
  • Arjunan, S.; Kumar, D. Decoding Subtle Forearm Flexions Using Fractal Features of Surface Electromyogram from Single and Multiple Sensors. J. Neuroeng. Rehabil. 2010, 7, 53. DOI: 10.1186/1743-0003-7-53.
  • Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Fractal Analysis Features for Weak and Single-Channel Upper-Limb EMG Signals. Expert Syst. Appl. 2012, 39, 11156–11163. DOI: 10.1016/j.eswa.2012.03.039.
  • Prakash, A.; Kumari, B.; Sharma, S. A Low-Cost, Wearable SEMG Sensor for Upper Limb Prosthetic Application. J. Med. Eng. Technol. 2019, 43, 235–247. DOI: 10.1080/03091902.2019.1653391.
  • De Luca, C. J.; Kuznetsov, M.; Gilmore, L. D.; Roy, S. H. Inter-Electrode Spacing of Surface EMG Sensors: Reduction of Crosstalk Contamination during Voluntary Contractions. J. Biomech. 2012, 45, 555–561. DOI: 10.1016/j.jbiomech.2011.11.010.
  • Wang, J.; Tang, L.; E Bronlund, J. Surface EMG Signal Amplification and Filtering. IJCA. 2013, 82, 15–22. DOI: 10.5120/14079-2073.
  • Prakash, A.; Sharma, S.; Sharma, N. A Compact-Sized Surface EMG Sensor for Myoelectric Hand Prosthesis. Biomed. Eng. Lett. 2019, 9, 467–479. DOI: 10.1007/s13534-019-00130-y.
  • Esposito, D.; Andreozzi, E.; Fratini, A.; Gargiulo, G.; Savino, S.; Niola, V.; Bifulco, P. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography. Sensors 2018, 18, 2553. DOI: 10.3390/s18082553.
  • Prakash, A.; Sharma, N.; Sharma, S. Novel Force Myography Sensor to Measure Muscle Contractions for Controlling Hand Prostheses. Instrum. Sci. Technol. 2020, 48, 43–62. DOI: 10.1080/10739149.2019.1655441.
  • Supuk, T. G.; Skelin, A. K.; Cic, M. Design, Development and Testing of a Low-Cost SEMG System and Its Use in Recording Muscle Activity in Human Gait. Sensors (Basel) 2014, 14, 8235–8258. DOI: 10.3390/s140508235.
  • Lobo-Prat, J.; Kooren, P. N.; Stienen, A. H.; Herder, J. L.; Koopman, B. F.; Veltink, P. H. Non-Invasive Control Interfaces for Intention Detection in Active Movement-Assistive Devices. J. Neuroeng. Rehabil. 2014, 11, 168. DOI: 10.1186/1743-0003-11-168.
  • Nazmi, N.; Abdul Rahman, M. A.; Yamamoto, S.-I.; Ahmad, S. A.; Zamzuri, H.; Mazlan, S. A. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors 2016, 16, 1304. DOI: 10.3390/s16081304.
  • Al-Mulla, M. R.; Sepulveda, F.; Colley, M. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue. Sensors (Basel) 2011, 11, 3545–3594. DOI: 10.3390/s110403545.
  • Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature Reduction and Selection for EMG Signal Classification. Expert Syst. Appl. 2012, 39, 7420–7431. DOI: 10.1016/j.eswa.2012.01.102.
  • Karabulut, D.; Ortes, F.; Arslan, Y. Z.; Adli, M. A. Comparative Evaluation of EMG Signal Features for Myoelectric Controlled Human Arm Prosthetics. Biocyber. Biomed. Eng. 2017, 37, 326–335. DOI: 10.1016/j.bbe.2017.03.001.
  • Phinyomark, A.; N. Khushaba, R.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors 2018, 18, 1615. DOI: 10.3390/s18051615.
  • Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T. J.; Naik, G. R.; Gunawardana, U.; Gargiulo, G. D. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation. Sensors 2019, 19, 4596. DOI: 10.3390/s19204596.
  • Taşar, B.; Gülten, A. EMG-Controlled Prosthetic Hand with Fuzzy Logic Classification Algorithm. In Modern Fuzzy Control Systems and Its Applications, 2017. p 321. DOI: 10.5772/intechopen.68242.
  • Ajiboye, A. B.; Weir, R. F. A Heuristic Fuzzy Logic Approach to EMG Pattern Recognition for Multifunctional Prosthesis Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 280–291. DOI: 10.1109/TNSRE.2005.847357.
  • Ahmad, S. A. Moving Approximate Entropy and Its Application to the Electromyographic Control of an Artificial Hand. Doctoral dissertation, University of Southampton, 2009.
  • Xie, H.-B.; Guo, T.; Bai, S.; Dokos, S. Hybrid Soft Computing Systems for Electromyographic Signals Analysis: A Review. Biomed. Eng. Online. 2014, 13, 8. DOI: 10.1186/1475-925X-13-8.
  • Castro, M. C. F.; Arjunan, S. P.; Kumar, D. K. Selection of Suitable Hand Gestures for Reliable Myoelectric Human Computer Interface. Biomed. Eng. Online. 2015, 14, 30. DOI: 10.1186/s12938-015-0025-5.
  • Hargrove, L.; Englehart, K.; Hudgins, B. A Training Strategy to Reduce Classification Degradation Due to Electrode Displacements in Pattern Recognition Based Myoelectric Control. Biomed. Signal Process. Control 2008, 3, 175–180. DOI: 10.1016/j.bspc.2007.11.005.
  • Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B.; Delbeke, J. On the Viability of Implantable Electrodes for the Natural Control of Artificial Limbs: Review and Discussion. Biomed. Eng. Online. 2012, 11, 33. DOI: 10.1186/1475-925X-11-33.
  • Roche, A. D.; Rehbaum, H.; Farina, D.; Aszmann, O. C. Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Curr. Surg. Rep. 2014, 2, 44. DOI: 10.1007/s40137-013-0044-8.
  • Stango, A.; Negro, F.; Farina, D. Spatial Correlation of High Density EMG Signals Provides Features Robust to Electrode Number and Shift in Pattern Recognition for Myocontrol. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 189–198. DOI: 10.1109/TNSRE.2014.2366752.
  • Englehart, K.; Hudgin, B.; Parker, P. A. A Wavelet-Based Continuous Classification Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. DOI: 10.1109/10.914793.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.