155
Views
0
CrossRef citations to date
0
Altmetric
Fiber Optics

Characterization of the sensitivity of a surface plasmon resonance (SPR) fiber optic sensor composed of silver and nickel oxide layers

& ORCID Icon

References

  • Liedberg, B.; Nylander, C.; Lunström, I. Surface Plasmon Resonance for Gas Detection and Biosensing. Sens. Actuat. B 1983, 4, 299–304. DOI: 10.1016/0250-6874(83)85036-7.
  • Jorgenson, R. C.; Yee, S. S. A Fiber Optic Chemical Sensor Based on Surface Plasmon Resonance. Sens. Actuat. B 1993, 12, 213–220. DOI: 10.1016/0925-4005(93)80021-3.
  • Homola, J.; Yee, S. S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sens. Actuat. B 1999, 54, 3–15. DOI: 10.1016/S0925-4005(98)00321-9.
  • Krupin, O.; Asiri, H.; Wang, C.; Tait, R. N.; Berini, P. Biosensing Using Straight Long Range Surface Plasmon Waveguides. Opt. Express 2013, 21, 698–709. DOI: 10.1364/OE.21.000698.
  • Chauhan, M.; Singh, V. K. Review on Recent Experimental SPR/LSPR Based Fiber Optic Analyte Sensors. Opt. Fib. Tech. 2021, 64, 102580. DOI: 10.1016/j.yofte.2021.102580.
  • Homola, J. Optical Fiber Sensor Based on Surface Plasmon Excitation. Sens. Actuat. B 1995, 29, 401–405. DOI: 10.1016/0925-4005(95)01714-3.
  • Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Theory of Surface Plasmons and Surface Plasmon Polaritons. Rep. Prog. Phys. 2007, 70, 1–87. DOI: 10.1088/0034-4885/70/1/R01.
  • Verma, R. K.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic Sensor for the IR Region Using a Conducting Metal Oxide Film. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2010, 27, 846–851. DOI: 10.1364/JOSAA.27.000846.
  • Semwal, V.; Gupta, B. D. Highly Selective SPR Based Fiber Optic Sensor for the Detection of Hydrogen Peroxide. Sens. Actuat. B 2021, 329, 129062. DOI: 10.1016/j.snb.2020.129062.
  • Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforsch. 1968, 23, 2135–2136. DOI: 10.1515/zna-1968-1247.
  • Gupta, B. D.; Verma, R. K. Surface Plasmon Resonance Based Fiber Optic Sensors: Principle, Probe Designs and Some Applications. J. Sens. 2009, 2009, 1–12. DOI: 10.1155/2009/979761.
  • Sharma, N. K.; Rani, M.; Sajal, V. Surface Plasmon Resonance Based Fiber Optic Sensor with Double Resonance Dips. Sens. Actuat. B 2013, 188, 326–333. DOI: 10.1016/j.snb.2013.07.007.
  • Kapoor, V.; Sharma, N. K.; Sajal, V. Indium Tin Oxide and Silver Based Fiber Optic SPR Sensor: An Experimental Study. Opt. Quant. Electron. 2019, 51, 125. DOI: 10.1007/s11082-019-1837-5.
  • Kapoor, V.; Sharma, N. K. Surface Plasmon Resonance Based Fiber Optic Sensor Prepared from Bilayers of Indium Tin Oxide-Indium Oxide. Microw. Opt. Technol. Lett. 2020, 62, 2439–2443. DOI: 10.1002/mop.32369.
  • Kapoor, V.; Sharma, N. K. Preparation and Characterization of a Silver-Magnesium Fluoride bi-Layers Based Fiber Optic Surface Plasmon Resonance Sensor. Instr. Sci. Tech. 2021, 49, 395–403. DOI: 10.1080/10739149.2020.1870041.
  • Kassa-Baghdouche, L.; Cassan, E. Mid-Infrared Refractive Index Sensing Using Optimized Slotted Photonic Crystal Waveguides. Photon. Nanostruct. 2018, 28, 32–36. DOI: 10.1016/j.photonics.2017.11.001.
  • Kassa-Baghdouche, L.; Cassan, E. Mid-Infrared Gas Sensor Based on High-Q/V Point-Defect Photonic Crystal Nanocavities. Opt. Quant. Electron. 2020, 52, 1–13.
  • Kassa-Baghdouche, L.; Cassan, E. Sensitivity Analysis of Ring-Shaped Slotted Photonic Crystal Waveguides for Mid-Infrared Refractive Index Sensing. Opt. Quant. Electron. 2019, 51, 1–11.
  • Afsari, A Sarraf, M. J. Design of a Hydrogen Sulfide Gas Sensor Based on a Photonic Crystal Cavity Using Graphene. Superlatt. Microstruct. 2020, 138, 106362. DOI: 10.1016/j.spmi.2019.106362.
  • Kassa-Baghdouche, L. High-Sensitivity Spectroscopic Gas Sensor Using Optimized H1 Photonic Crystal Microcavities. J. Opt. Soc. Am. B 2020, 37, A277–A284. DOI: 10.1364/JOSAB.398330.
  • Arif, M.; Huq, F.; Ahmed, K.; Asaduzzaman, S.; Azad, M.; Kalam, A. Design and Optimization of Photonic Crystal Fiber for Liquid Sensing Applications. Photon. Sens. 2016, 6, 279–288. DOI: 10.1007/s13320-016-0323-y.
  • Zhao, Y.; Zhang, Y. N.; Wang, Q. Research Advances of Photonic Crystal Gas and Liquid Sensors. Sens. Actuat. B 2011, 160, 1288–1297. DOI: 10.1016/j.snb.2011.09.064.
  • Kassa-Baghdouche, L. Gas Sensing Performance of High-Q Photonic Crystal Nanocavities Based on a Silicon-on-Insulator Platform. Opt. Quant. Electron. 2021, 53, 1–13.
  • Mishra, S. K.; Malviya, K. D.; Mishra, A. K. Highly Sensitive Bimetallic Plasmonic Sensing Probe for Aqueous Samples. Opt. Quant. Electron. 2020, 52, 1–10.
  • Mishra, A. K.; Mishra, S. K. MgF2 Prism/Rhodium/Graphene: efficient Refractive Index Sensing Structure in Optical Domain. J. Phys. Condens. Matter. 2017, 29, 145001. DOI: 10.1088/1361-648X/aa5e40.
  • Mishra, A. K.; Mishra, S. K. Infrared SPR Sensitivity Enhancement Using ITO/TiO2/Silicon Overlays. EPL 2015, 112, 10001. DOI: 10.1209/0295-5075/112/10001.
  • Mishra, S. K.; Verma, R. K.; Mishra, A. K. Versatile Sensing Structure: GaP/Au/Graphene/Silicon. Photon 2021, 8, 547. DOI: 10.3390/photonics8120547.
  • Mishra, S. K.; Mishra, A. K. ITO/Polymer Matrix Assisted Surface Plasmon Resonance Based Fiber Optic Sensor. Resul. Opt. 2021, 5, 100173. DOI: 10.1016/j.rio.2021.100173.
  • Sarychev, A. K.; Bergman, D. J.; Yagil, Y. Theory of the Optical and Microwave Properties of Metal-Dielectric Films. Phys. Rev. B Condens. Matter. 1995, 51, 5366–5385. DOI: 10.1103/physrevb.51.5366.
  • Zynio, S. A.; Samoylov, A. V.; Surovtseva, E. R.; Mirsky, V. M.; Shirshov, Y. M. Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance. Sensors 2002, 2, 62–70. [Database] DOI: 10.3390/s20200062.
  • Rhodes, C.; Franzen, S.; Maria, J. P.; Losego, M.; Leonard, D. N.; Laughlin, B.; Duscher, G.; Weibel, S. Surface Plasmon Resonance in Conducting Metal Oxides. J. Appl. Phys. 2006, 100, 054905. DOI: 10.1063/1.2222070.
  • Dostalek, J.; Kasry, A.; Knoll, W. Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces. Plasmon 2007, 2, 97–106. DOI: 10.1007/s11468-007-9037-8.
  • Shukla, S.; Sharma, N. K.; Sajal, V. Sensitivity Enhancement of a Surface Plasmon Resonance Based Fiber Optic Sensor Using ZnO Thin Film: A Theoretical Study. Sens. Actuat. B 2015, 206, 463–470. DOI: 10.1016/j.snb.2014.09.083.
  • Tabassum, R.; Gupta, B. D. Performance Analysis of Bimetallic Layer with Zinc Oxide for SPR Based Fiber Optic Sensor. J. Lightwave Technol. 2015, 33, 4565–4571. DOI: 10.1109/JLT.2015.2479631.
  • Singh, S.; Mishra, S. K.; Gupta, B. D. Sensitivity Enhancement of Surface Plasmon Resonance Based Fiber Optic Refractive Index Sensor Utilizing an Additional Layer of Oxides. Sens. Actuat. A 2013, 193, 136–140. DOI: 10.1016/j.sna.2013.01.012.
  • Mishra, S. K.; Rani, S.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic Hydrogen Sulphide Gas Sensor Utilizing Nickel Oxide Doped ITO Thin Film. Sens. Actuat. B 2014, 195, 215–222. DOI: 10.1016/j.snb.2014.01.045.
  • Tsu, R.; Esaki, L.; Ludeke, R. Photoconductivity in Disordered Nickel-Oxide Films. Phys. Rev. Lett. 1969, 23, 977–979. DOI: 10.1103/PhysRevLett.23.977.
  • Seike, T.; Nagai, J. Electrochromism of 3d Transition Metal Oxides. Sol. Ener. Mat. 1991, 22, 107–117. DOI: 10.1016/0165-1633(91)90010-I.
  • Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent Conducting p-Type NiO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films. 1993, 236, 27–31. DOI: 10.1016/0040-6090(93)90636-4.
  • Pramanik, P.; Bhattacharya, S. A Chemical Method for the Deposition of Nickel Oxide Thin Films. J. Electrochem. Soc. 1990, 137, 3869–3870. DOI: 10.1149/1.2086316.
  • Lampert, C. M. Electrochromic Materials and Devices for Energy Efficient Windows. Sol. Ener. Mat. 1984, 11, 1–27. DOI: 10.1016/0165-1633(84)90024-8.
  • Cook, J. G.; Koffyberg, F. P. Solar Thermal Absorbers Employing Oxides of Ni and Co. Sol. Ener. Mat. 1984, 10, 55–67. DOI: 10.1016/0165-1633(84)90008-X.
  • Koffyberg, F. P.; Benko, F. A. P-Type NiO as a Photoelectrolysis Cathode. J. Electrochem. Soc. 1981, 128, 2476–2479. DOI: 10.1149/1.2127273.
  • Semwal, V.; Shrivastav, A. M.; Verma, R.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic Ethanol Sensor Using Layer of Silver/Silicon/Hydrogel Entrapped with ADH/NAD. Sens. Actuat. B 2016, 230, 485–492. DOI: 10.1016/j.snb.2016.02.084.
  • Fontana, E. Thickness Optimization of Metal Films for the Development of Surface Plasmon Based Sensors for Nonabsorbing Media. Appl. Opt. 2006, 45, 7632–7642. DOI: 10.1364/ao.45.007632.
  • Chen, Y.; Zheng, R.; Lu, Y.; Wang, P.; Ming, H. Fiber Optic Surface Plasmon Resonant Sensor with Low Index anti-Oxidation Coating. Chin. Opt. Lett. 2011, 9, 100605. DOI: 10.3788/COL201109.100605.
  • Sharma, A. K.; Gupta, B. D. On the Performance of Different Bimetallic Combinations in Surface Plasmon Resonance Based Fiber Optic Sensors. J. Appl. Phys. 2007, 101, 093111. [Database] DOI: 10.1063/1.2721779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.