1,786
Views
0
CrossRef citations to date
0
Altmetric
Bioanalytical

Pneumatic piston hydrostatic bioreactor for cartilage tissue engineering

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Fahy, N.; Alini, M.; Stoddart, M. J. Mechanical Stimulation of Mesenchymal Stem Cells: Implications for Cartilage Tissue Engineering. J. Orthop. Res. 2018, 36, 52–63. DOI: 10.1002/jor.23670.
  • Sanchez-Adams, J.; Leddy, H. A.; McNulty, A. L.; O'Conor, C. J.; Guilak, F. The Mechanobiology of Articular Cartilage: bearing the Burden of Osteoarthritis. Curr. Rheumatol. Rep. 2014, 16, 451–459. DOI: 10.1007/s11926-014-0451-6.
  • Benjamin, M.; Hillen, B. Mechanical Influences on Cells, Tissues and organs – Mechanical Morphogenesis. Eur. J. Morphol. 2003, 41, 3–7. DOI: 10.1076/ejom.41.1.3.28102.
  • Villemure, I.; Stokes, I. A. Growth Plate Mechanics and Mechanobiology. A Survey of Present Understanding. J. Biomech. 2009, 42, 1793–1803. DOI: 10.1016/j.jbiomech.2009.05.021.
  • Humphrey, J. D.; Dufresne, E. R.; Schwartz, M. A. Mechanotransduction and Extracellular Matrix Homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. DOI: 10.1038/nrm3896.
  • Henstock, J. R.; Foster, N. C.; Reinwald, Y.; El Haj, A. J. Dynamic 3D Culture: Models of Chondrogenesis and Endochondral Ossification. Birth Defects Res. C Embryo Today 2015, 105, 19–33. DOI: 10.1002/bdrc.21088.
  • Neßler, K. H. L.; Henstock, J. R.; El Haj, A. J.; Waters, S. L.; Whiteley, J. P.; Osborne, J. M. The Influence of Hydrostatic Pressure on Tissue Engineered Bone Development. J. Theor. Biol. 2016, 394, 149–159. DOI: 10.1016/j.jtbi.2015.12.020.
  • Henstock, J. R.; El Haj, A. J. Bioreactors: recreating the Biomechanical Environment in Vitro. In Mechanobiology: Exploitation for Medical Benefit, Rawlinson SC, Ed. Wiley-Blackwell: Oxford, 2017.
  • Henstock, J. R.; Rotherham, M.; Rashidi, H.; Shakesheff, K. M.; El Haj, A. J. Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically with Bone Morphogenetic Protein 2: applications for Injectable Cell Therapy. Stem Cells Transl. Med. 2014, 3, 1363–1374. DOI: 10.5966/sctm.2014-0017.
  • Hodgkinson, T.; Amado, IN.; O'Brien, F. J.; Kennedy, O. D. The Role of Mechanobiology in Bone and Cartilage Model Systems in Characterizing Initiation and Progression of Osteoarthritis. APL Bioeng. 2022, 6, 011501. DOI: 10.1063/5.0068277.
  • Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, Regional Prevalence, Incidence and Risk Factors of Knee Osteoarthritis in Population-Based Studies. EClinicalMedicine 2020, 29-30, 100587. DOI: 10.1016/j.eclinm.2020.100587.
  • Ueki, M.; Tanaka, N.; Tanimoto, K.; Nishio, C.; Honda, K.; Lin, Y. Y.; Tanne, Y.; Ohkuma, S.; Kamiya, T.; Tanaka, E.; Tanne, K. The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes. Ann. Biomed. Eng. 2008, 36, 793–800. DOI: 10.1007/s10439-008-9462-7.
  • Peroglio, M.; Gaspar, D.; Zeugolis, D. I.; Alini, M. Relevance of Bioreactors and Whole Tissue Cultures for the Translation of New Therapies to Humans. J. Orthop. Res. 2018, 36, 10–21. DOI: 10.1002/jor.23655.
  • Janvier, A. J.; Canty-Laird, E. G.; Henstock, J. R. A Universal Multi-Platform 3D Printed Bioreactor Chamber for Tendon Tissue Engineering. J. Tissue Eng. 2020, 11, 2041731420942462–2041731420942415. DOI: 10.1177/2041731420942462.
  • Elder, B. D.; Athanasiou, K. A. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration. Tissue Eng. Part B Rev. 2009, 15, 43–53. DOI: 10.1089/ten.teb.2008.0435.
  • Mauck, R. L.; Soltz, M. A.; Wang, C. C.; Wong, D. D.; Chao, P. H.; Valhmu, W. B.; Hung, C. T.; Ateshian, G. A. Functional Tissue Engineering of Articular Cartilage through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. J. Biomech. Eng. 2000, 122, 252–260. DOI: 10.1115/1.429656.
  • Henstock, J. R.; Rotherham, M.; Rose, J. B.; El Haj, A. J. Cyclic Hydrostatic Pressure Stimulates Enhanced Bone Development in the Foetal Chick Femur in Vitro. Bone 2013, 53, 468–477. DOI: 10.1016/j.bone.2013.01.010.
  • Reinwald, Y.; Leonard, K. H. L.; Henstock, J. R.; Whiteley, J. P.; Osborne, J. M.; Waters, S. L.; Levesque, P.; El Haj, A. J. Evaluation of the Performance of a Novel Hydrostatic Force Bioreactor. Tissue Eng. Part C Methods 2015, 21, 1–14. DOI: 10.1089/ten.tec.2013.0476.
  • Hodder, E.; Guppy, F.; Covill, D.; Bush, P. The Effect of Hydrostatic Pressure on Proteoglycan Production in Articular Cartilage in Vitro: A Meta-Analysis. Osteoarthritis Cartilage. 2020, 28, 1007–1019. DOI: 10.1016/j.joca.2020.03.021.
  • Clementi, A.; Egger, D.; Charwat, V.; Kasper, C. Cell Culture Conditions: Cultivation of Stem Cells under Dynamic Conditions. In Cell Engineering and Regeneration, Springer Nature Switzerland AG, 2020; pp. 415–447. DOI: 10.1007/978-3-319-08831-0.
  • Masuda, K.; Sah, R. L.; Hejna, M. J.; Thonar, E. J. A Novel Two‐Step Method for the Formation of Tissue‐Engineered Cartilage by Mature Bovine Chondrocytes: The Alginate‐Recovered‐Chondrocyte (ARC) Method. J. Orthop. Res. 2003, 21, 139–148. DOI: 10.1016/S0736-0266(02)00109-2.
  • Onwubolu, G. C. Mechatronics: Principles and Applications. Butterworth-Heinemann: Oxford, 2005.
  • Condit, R.; Jones, D. W. Stepping Motors Fundamentals. Microchip Inc. Publication AN907, USA, 2004; pp 1–22
  • Booeshaghi, A.; Beltrame, E. D.; Bannon, D.; Gehring, J.; Pachter, L. Principles of Open Source Bioinstrumentation Applied to the Poseidon Syringe Pump System. Sci. Rep. 2019, 9, 1–8. DOI: 10.1038/s41598-019-48815-9.
  • Bauer, W. Hydropneumatic Suspension Systems. Springer: Berlin, 2011.
  • Wenger, K. H.; El-Awady, A. R.; Messer, R. L.; Sharawy, M. M.; White, G.; Lapp, C. A. Pneumatic Pressure Bioreactor for Cyclic Hydrostatic Stress Application: mechanobiology Effects on Periodontal Ligament Cells. J. Appl. Physiol. (1985) 2011, 111, 1072–1079. DOI: 10.1152/japplphysiol.01175.2010.
  • Chen, J.; Yuan, Z.; Liu, Y.; Zheng, R.; Dai, Y.; Tao, R.; Xia, H.; Liu, H.; Zhang, Z.; Zhang, W.; et al. Improvement of in Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor. Stem Cells Transl. Med. 2017, 6, 982–991. DOI: 10.5966/sctm.2016-0118.
  • Ehrmann, G.; Blachowicz, T.; Homburg, S. V.; Ehrmann, A. Measuring Biosignals with Single Circuit Boards. Bioengineering 2022, 9, 84. DOI: 10.3390/bioengineering9020084.
  • McGlashan, S. R.; Knight, M. M.; Chowdhury, T. T.; Joshi, P.; Jensen, C. G.; Kennedy, S.; Poole, C. A. Mechanical Loading Modulates Chondrocyte Primary Cilia Incidence and Length. Cell Biol. Int. 2010, 34, 441–446. DOI: 10.1042/CBI20090094.
  • Smith, R. L.; Carter, D. R.; Schurman, D. J. Pressure and Shear Differentially Alter Human Articular Chondrocyte Metabolism: A Review. Clin. Orthop. Relat. Res. (1976–2007) 2004, 427, S89–S95.
  • Jiang, W.; Liu, H.; Wan, R.; Wu, Y.; Shi, Z.; Huang, W. Mechanisms Linking Mitochondrial Mechanotransduction and Chondrocyte Biology in the Pathogenesis of Osteoarthritis. Ageing Res. Rev. 2021, 67, 101315. DOI: 10.1016/j.arr.2021.101315.
  • Anderson, D. E.; Johnstone, B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review. Front. Bioeng. Biotechnol. 2017, 5, 76. DOI: 10.3389/fbioe.2017.00076.
  • Miyanishi, K.; Trindade, M. C.; Lindsey, D. P.; Beaupré, G. S.; Carter, D. R.; Goodman, S. B.; Schurman, D. J.; Smith, R. L. Dose-and Time-Dependent Effects of Cyclic Hydrostatic Pressure on Transforming Growth Factor-β3-Induced Chondrogenesis by Adult Human Mesenchymal Stem Cells in Vitro. Tissue Eng. 2006, 12, 2253–2262. DOI: 10.1089/ten.2006.12.2253.