365
Views
1
CrossRef citations to date
0
Altmetric
Spectrophotometry

Determination of rhodamine B in water and cosmetics by switchable solvent-based liquid phase microextraction with spectrophotometric determination

& ORCID Icon

References

  • Chao, Y.; Pang, J.; Bai, Y.; Wu, P.; Luo, J.; He, J.; Jin, Y.; Li, X.; Xiong, J.; Li, H.; et al. Graphene-like BN@ SiO2 Nanocomposites as Efficient Sorbents for Solid-Phase Extraction of Rhodamine B and Rhodamine 6G from Food Samples. Food Chem. 2020, 320, 126666. DOI: 10.1016/j.foodchem.2020.126666.
  • Ugurlu, M. Adsorption of a Textile Dye onto Activated Sepiolite. Microporous Mesoporous Mater. 2009, 119, 276–283. DOI: 10.1016/j.micromeso.2008.10.024.
  • Sharifi, M.; Shokrollahi, A.; Ebrahimi, F. Synthesis and Characterisation of MCM-41@ SiO2-NH-Pydc as a New Nano Mesoporous Sorbent: application for the Simultaneous Preconcentration of Cationic Dyes Previous Spectrophotometric Determination, Using Taguchi Experimental Design. Int. J. Environ. Anal. Chem. 2021, 1–19. DOI: 10.1080/03067319.2021.1928098.
  • Bagheri, A. R.; Ghaedi, M. Synthesis of Chitosan Based Molecularly İmprinted Polymer for Pipette-Tip Solid Phase Extraction of Rhodamine B from Chili Powder Samples. Int. J. Biol. Macromol. 2019, 139, 40–48. DOI: 10.1016/j.ijbiomac.2019.07.196.
  • Arabi, M.; Ostovan, A.; Bagheri, A. R.; Guo, X.; Li, J.; Ma, J.; Chen, L. Hydrophilic Molecularly İmprinted Nanospheres for the Extraction of Rhodamine B Followed by HPLC Analysis: A Green Approach and Hazardous Waste Elimination. Talanta 2020, 215, 120933. DOI: 10.1016/j.talanta.2020.120933.
  • Badiee, H.; Zanjanchi, M. A.; Zamani, A.; Fashi, A. Hollow Fiber Liquid-Phase Microextraction Based on the Use of a Rotating Extraction Cell: A Green Approach for Trace Determination of Rhodamine 6G and Methylene Blue Dyes. Environ. Pollut. 2019, 255, 113287. DOI: 10.1016/j.envpol.2019.113287.
  • Ozdemir, F. A.; Demirata, B.; Apak, R. Adsorptive Removal of Methylene Blue from Simulated Dyeing Wastewater with Melamine-Formaldehyde-Urea Resin. J. Appl. Polym. Sci. 2009, 112, 3442–3448. DOI: 10.1002/app.29835.
  • Huang, Y.; Wang, D.; Liu, W.; Zheng, L.; Wang, Y.; Liu, X.; Fan, M.; Gong, Z. Rapid Screening of Rhodamine B in Food by Hydrogel Solid-Phase Extraction Coupled with Direct Fluorescence Detection. Food Chem. 2020, 316, 126378. DOI: 10.1016/j.foodchem.2020.126378.
  • Khani, R.; Sobhani, S.; Yari, T. Magnetic Dispersive Micro Solid-Phase Extraction of Trace Rhodamine B Using İmino-Pyridine İmmobilized on İron Oxide as Nanosorbent and Optimization by Box–Behnken Design. Microchem. J. 2019, 146, 471–478. DOI: 10.1016/j.microc.2019.01.038.
  • Honeychurch, K. C. Voltammetric Behaviour of Rhodamine B at a Screen-Printed Carbon Electrode and Its Trace Determination in Environmental Water Samples. Sensors 2022, 22, 4631. DOI: 10.3390/s22124631.
  • Wu, J.; Liu, W.; Zhu, R.; Zhu, X. On-Line Separation/Analysis of Rhodamine B Dye Based on a Solid-Phase Extraction High Performance Liquid Chromatography Self-Designed Device. RSC Adv. 2021, 11, 8255–8263. DOI: 10.1039/D0RA10771A.
  • AlMasoud, N.; Wabaidur, S. M.; Alothman, Z. A.; Ghfar, A. A.; Alomar, T. S. A Solid Phase Extraction Based UPLC-ESI-MS/MS Method Using Surfactant-Modified Clay as Extraction Sorbent for the Removal and Determination of Rhodamine B in İndustrial Wastewater Samples. Desalin. Water Treat. 2020, 195, 222–231. DOI: 10.5004/dwt.2020.25896.
  • Ranjbari, E.; Hadjmohammadi, M. R. Optimization of Magnetic Stirring Assisted Dispersive Liquid–Liquid Microextraction of Rhodamine B and Rhodamine 6G by Response Surface Methodology: Application in Water Samples, Soft Drink, and Cosmetic Products. Talanta 2015, 139, 216–225. DOI: 10.1016/j.talanta.2015.02.051.
  • Chiang, T. L.; Wang, Y. C.; Ding, W. H. Trace Determination of Rhodamine B and Rhodamine 6G Dyes in Aqueous Samples by Solid Phase Extraction and High Performance Liquid Chromatography Coupled with Fluorescence Detection. J. Chin. Chem. Soc. 2012, 59, 515–519. DOI: 10.1002/jccs.201100318.
  • Yu, Y.; Mao, Y.; Qu, L. Simple Voltammetric Determination of Rhodamine B by Using the Glassy Carbon Electrode in Fruit Juice and Preserved Fruit. Food Anal. Methods 2013, 6, 1665–1670. DOI: 10.1007/s12161-013-9580-1.
  • Yang, X. F.; Guo, X. Q.; Li, H. Fluorimetric Determination of Hemoglobin Usingspiro Form Rhodamine B Hydrazide in a Micellar Medium. Talanta 2003, 61, 439–445. DOI: 10.1016/S0039-9140(03)00306-0.
  • Liu, Y.; Chen, Y.; Liu, S. X.; Guan, X. D.; Wada, T.; Inoue, Y. Unique Fluorescencebehavior of Rhodamine B upon İnclusion Complexation with Novel Bis(β-Cyclodextrin-6-yl) 2,2′-Bipyridine-4,4′–Dicarboxylate. Org. Lett. 2001, 3, 1657–1660. DOI: 10.1021/ol015820a.
  • Lopez-Montes, A. M.; Dupont, A. L.; Desmazieres, B.; Lavedrine, B. Identification of Synthetic Dyes in Early Color Photographs Using Capillary Electrophoresis and Electrospray İonisation–Mass Spectrometry. Talanta 2013, 114, 217–226. DOI: 10.1016/j.talanta.2013.04.020.
  • Wang, C. C.; Masi, A. N.; Fernánde, L. On-Line Micellar-Enhanced Spectrofluorimetric Determination of Rhodamine Dye in Cosmetics. Talanta 2008, 75, 135–140. DOI: 10.1016/j.talanta.2007.10.041.
  • Yan, J.; Cen, J. M.; Tan, X. C.; Tan, S. F.; Wu, Y. Y.; Zhang, H.; Wang, Q. Determination of Trace Rhodamine B by Spectrofluorometry and Magnetic Solid Phase Extraction Based on a 3D Reduced Graphene Oxide Composite. Anal.Methods 2017, 9, 5433–5440. DOI: 10.1039/C7AY01622K.
  • Pourreza, N.; Rastegarzadeh, S.; Larki, A. Micelle-Mediated Cloud Point Extraction and Spectrophotometric Determination of Rhodamine B Using Triton X-100. Talanta 2008, 77, 733–736. DOI: 10.1016/j.talanta.2008.07.031.
  • Asfaram, A.; Ghaedi, M.; Goudarzi, A. Optimization of Ultrasound-Assisted Dispersive Solid-Phase Microextraction Based on Nanoparticles Followed by Spectrophotometry for the Simultaneous Determination of Dyes Using Experimental Design. Ultrason. Sonochem. 2016, 32, 407–417. DOI: 10.1016/j.ultsonch.2016.04.009.
  • Xiao, N.; Deng, J.; Huang, K.; Ju, S.; Hu, C.; Liang, J. Application of Derivative and Derivative Ratio Spectrophotometry to Simultaneous Trace Determination of Rhodamine B and Rhodamine 6G after Dispersive Liquid–Liquid Microextraction. Spectrochim. Acta – A Mol. Biomol. Spectrosc. 2014, 128, 312–318. DOI: 10.1016/j.saa.2014.02.180.
  • Liu, X.; Yu, D.; Yu, Y.; Ji, S. Preparation of a Magnetic Molecularly İmprinted Polymer for Selective Recognition of Rhodamine B. Appl. Surf. Sci. 2014, 320, 138–145. DOI: 10.1016/j.apsusc.2014.08.122.
  • Long, C.; Mai, Z.; Yang, X.; Zhu, B.; Xu, X.; Huang, X.; Zou, X. A New Liquid–Liquid Extraction Method for Determination of 6 Azo-Dyes in Chilli Products by High-Performance Liquid Chromatography. Food Chem. 2011, 126, 1324–1329. DOI: 10.1016/j.foodchem.2010.11.089.
  • Zou, T.; He, P.; Yasen, A.; Li, Z. Determination of Seven Synthetic Dyes in Animal Feeds and Meat by High Performance Liquid Chromatography with Diode Array and Tandem Mass Detectors. Food Chem. 2013, 138, 1742–1748. DOI: 10.1016/j.foodchem.2012.11.084.
  • Roostaie, A.; Allahnoori, F.; Ehteshami, S. Composite Magnetic Nanoparticles (CuFe2O4) as a New Microsorbent for Extraction of Rhodamine B from Water Samples. J. AOAC Int. 2017, 100, 1539–1543. DOI: 10.5740/jaoacint.16-0421.
  • Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent Advances in Solid-Phase Sorbents for Sample Preparation Prior to Chromatographic Analysis. TrAC – Trends Anal. Chem. 2014, 59, 26–41. DOI: 10.1016/j.trac.2014.03.011.
  • Alesso, M.; Bondioli, G.; Talío, M. C.; Luconi, M. O.; Fernández, L. P. Micelles Mediated Separation Fluorimetric Methodology for Rhodamine B Determination in Condiments, Snacks and Candies. Food Chem. 2012, 134, 513–517. DOI: 10.1016/j.foodchem.2012.02.110.
  • Jalbani, N.; Yilmaz, E.; Alosmanov, R. M.; Soylak, M. Solid-Phase Extraction of Copper and Zinc in Water Samples Using Diethylamine-Modified Phosphorus-Containing Polymer. Desalin. Water Treat. 2016, 57, 2834–2842. DOI: 10.1080/19443994.2014.989919.
  • Ojeda, C. B.; Rojas, F. S. Separation and Preconcentration by Dispersive Liquid–Liquid Microextraction Procedure: recent Applications. Chromatographia 2011, 74, 651–679. DOI: 10.1007/s10337-011-2124-1.
  • Aydin, F.; Yilmaz, E.; Soylak, M. A Simple and Novel Deep Eutectic Solvent Based Ultrasound-Assisted Emulsification Liquid Phase Microextraction Method for Malachite Green in Farmed and Ornamental Aquarium Fish Water Samples. Microchem. J. 2017, 132, 280–285. DOI: 10.1016/j.microc.2017.02.014.
  • Xu, B.; Song, D.; Wang, Y.; Gao, Y.; Cao, B.; Zhang, H.; Sun, Y. In Situ İonic-Liquid-Dispersive Liquid–Liquid Microextraction of Sudan Dyes from Liquid Samples. J. Sep. Sci. 2014, 37, 1967–1973. DOI: 10.1002/jssc.201400317.
  • Fan, Y.; Chen, M.; Shentu, C.; El-Sepai, F.; Wang, K.; Zhu, Y.; Ye, M. Ionic Liquids Extraction of Para Red and Sudan Dyes from Chilli Powder, Chilli Oil and Food Additive Combined with High Performance Liquid Chromatography. Anal. Chim. Acta 2009, 650, 65–69. DOI: 10.1016/j.aca.2009.03.025.
  • Di, X.; Wang, X.; Liu, Y.; Guo, X. Microwave Assisted Extraction in Combination with Solid Phase Purification and Switchable Hydrophilicity Solvent-Based Homogeneous Liquid-Liquid Microextraction for the Determination of Sulfonamides in Chicken Meat. J. Chromatogr. B 2019, 1118, 109–115.
  • Lamei, N.; Ezoddin, M.; Kakavandi, N. R.; Abdi, K.; Ghazi-khansari, M. Ultrasound-Assisted Switchable Solvent in Determination of Quaternary Ammonium Herbicide Paraquat in Biological, Environmental Water, and Apple Juice Samples Using Chemical Reduction Process Coupled to GC–MS Detection. Chromatographia 2018, 81, 923–930. DOI: 10.1007/s10337-018-3500-x.
  • Vessally, E.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R.; Babazadeh, M.; Hosseinian, A.; Omidi, F.; Ebrahimi, M. H. Application of Switchable Solvent-Based Liquid Phase Microextraction for Preconcentration and Trace Detection of Cadmium İons in Baby Food Samples. J. Iran. Chem. Soc. 2018, 15, 491–498. DOI: 10.1007/s13738-017-1249-z.
  • Vakh, C.; Pochivalov, A.; Andruch, V.; Moskvin, L.; Bulatov, A. A Fully Automated Effervescence-Assisted Switchable Solvent-Based Liquid Phase Microextraction Procedure: Liquid Chromatographic Determination of Ofloxacin in Human Urine Samples. Anal. Chim. Acta 2016, 907, 54–59. DOI: 10.1016/j.aca.2015.12.004.
  • Behpour, M.; Nojavan, S.; Asadi, S.; Shokri, A. Combination of Gel-Electromembrane Extraction with Switchable Hydrophilicity Solvent-Based Homogeneous Liquid-Liquid Microextraction Followed by Gas Chromatography for the Extraction and Determination of Antidepressants in Human Serum, Breast Milk and Wastewater. J Chromatogr A 2020, 1621, 461041. DOI: 10.1016/j.chroma.2020.461041.
  • Wang, H.; Xia, M.; Ling, Y.; Qian, F.; Xu, J.; Wang, Z.; Li, J.; Wang, X. Switchable Hydrophilicity Solvent Based and Solidification-Assisted Liquid-Phase Microextraction Combined with GFAAS for Quantification of Trace Soluble Lead in Raw Bovine and Derivative Milk Products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1654–1666. DOI: 10.1080/19440049.2019.1644458.
  • Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of Switchable Hydrophilicity Solvents for the Homogeneous Liquid–Liquid Microextraction of Triazine Herbicides from Environmental Water Samples. J. Sep. Sci. 2015, 38, 990–995. DOI: 10.1002/jssc.201401224.
  • Di, X.; Wang, X.; Liu, Y.; Guo, X.; Di, X. Solid-Phase Extraction Coupled with Switchable Hydrophilicity Solvent-Based Homogeneous Liquid–Liquid Microextraction for Chloramphenicol Enrichment in Environmental Water Samples: A Novel Alternative to Classical Extraction Techniques. Anal. Bioanal. Chem. 2019, 411, 803–812. DOI: 10.1007/s00216-018-1486-8.
  • Memon, Z. M.; Yilmaz, E.; Soylak, M. Switchable Solvent Based Green Liquid Phase Microextraction Method for Cobalt in Tobacco and Food Samples Prior to Flame Atomic Absorption Spectrometric Determination. J. Mol. Liq. 2017, 229, 459–464. DOI: 10.1016/j.molliq.2016.12.098.
  • Yilmaz, E.; Soylak, M. Switchable Polarity Solvent for Liquid Phase Microextraction of Cd (II) as Pyrrolidinedithiocarbamate Chelates from Environmental Samples. Anal. Chim. Acta 2015, 886, 75–82. DOI: 10.1016/j.aca.2015.06.021.
  • Reclo, M.; Yilmaz, E.; Bazel, Y.; Soylak, M. Switchable Solvent Based Liquid Phase Microextraction of Palladium Coupled with Determination by Flame Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2017, 97, 1315–1327. DOI: 10.1080/03067319.2017.1413185.
  • Reclo, M.; Yilmaz, E.; Soylak, M.; Andruch, V.; Bazel, Y. Ligandless Switchable Solvent Based Liquid Phase Microextraction of Nickel from Food and Cigarette Samples Prior to İts Micro-Sampling Flame Atomic Absorption Spectrometric Determination. J. Mol. Liq. 2017, 237, 236–241. DOI: 10.1016/j.molliq.2017.04.066.
  • Ece, M. S.; Kutluay, S. Comparative and Competitive Adsorption of Gaseous Toluene, Ethylbenzene, and Xylene onto Natural Cellulose-Modified Fe3O4 Nanoparticles. J. Environ. Chem. Eng. 2022, 10, 107389. DOI: 10.1016/j.jece.2022.107389.
  • Soylak, M.; Elci, L.; Dogan, M. Solid Phase Extraction of Trace Metal Ions with Amberlite XAD Resins Prior to Atomic Absorption Spectrometric Analysis. J. Trace Microprobe Techn. 2001, 19, 329–344. DOI: 10.1081/TMA-100105049.
  • Ozmal, F.; Kale, M.; Ay, C. Use of Paliurus Spina-Christi Mill as a Novel Biosorbent: efficient Biosorption of Pb(II) and Cd(II) İons from Aqueous Solution. Desalin. Water Treat. 2022, 249, 246–258. DOI: 10.5004/dwt.2022.28139.
  • Tuzen, M.; Uluozlu, O. D.; Karaman, I.; Soylak, M. Mercury(II) and Methyl Mercury Speciation on Streptococcus Pyogenes Loaded Dowex Optipore SD-2. J. Hazard. Mater. 2009, 169, 345–350. DOI: 10.1016/j.jhazmat.2009.03.100.
  • Bouyahmed, F.; Muller, F.; Richard, A.; Mostefaoui, T. A.; Belabbas, I.; Warmont, F.; Roulet, M.; Reinert, L.; Duclaux, L. Delpeux-Ouldriane S. Chitosan-Multilayered Graphene Oxide Hybrid Beads for Zn2+ and Metoprolol Adsorption. C. R. Chim. 2022, 25, 205–223.
  • Soylak, M.; Gorucu, H. H.; Yilmaz, E. Micelle-Based Restricted Access Ion-Pair Microextraction of Phosphate at Trace Levels in Water Samples for Separation, Preconcentration and Determination. Eurobiotech. J. 2020, 4, 89–96. DOI: 10.2478/ebtj-2020-0010.
  • Batur, E.; Kutluay, S. Dynamic Adsorption Behavior of Benzene, Toluene, and Xylene VOCs in Single- and Multi-Component Systems by Activated Carbon Derived from Defatted Black Cumin (Nigella Sativa L.) Biowaste. J. Environ. Chem. Eng. 2022, 10, 107565. DOI: 10.1016/j.jece.2022.107565.
  • Soylak, M.; Narin, I.; Elci, L.; Dogan, M. Atomic Absorption Spectrometric Determination of Copper, Cadmium, Lead and Nickel in Urine Samples after Enrichment and Separation Procedure on an Activated Carbon Column. Trace Elem. Electrolyte 1999, 16, 131–134.
  • Lin, S.; Hasi, W.-L.-J.; Lin, X.; Han, S.-q.-g.-w.; Lou, X.-T.; Yang, F.; Lin, D.-Y.; Lu, Z.-W. Rapid and Sensitive SERS Method for Determination of Rhodamine B in Chili Powder with Paper-Based Substrates. Anal. Methods 2015, 7, 5289–5294. DOI: 10.1039/C5AY00028A.
  • Harikrishnan, R.; Sundraraj, K.; Hui, B. Y.; Zain, N. N. M.; Yahaya, N.; Sambasevam, K. P.; Mohamad, S.; Aliaas, Y.; Raoov, M. Vortex-Assisted Supramolecular-Based Dispersive Liquid Phase Microextraction for Spectrophotometric Determination of Rhodamine B in Chili Powder. Malaysian J. Anal. Sci. 2020, 24, 197–208.
  • Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W. Synthesis and Characterization of Core–Shell Magnetic Molecularly İmprinted Polymers for Solid-Phase Extraction and Determination of Rhodamine B in Food. Food Chem. 2015, 171, 292–297. DOI: 10.1016/j.foodchem.2014.09.024.
  • Moradi, M.; Yamini, Y.; Tayyebi, M.; Asiabi, H. Ultrasound-Assisted Liquid-Phase Microextraction Based on a Nanostructured Supramolecular Solvent. Anal. Bioanal. Chem. 2013, 405, 4235–4243. DOI: 10.1007/s00216-013-6810-8.
  • Yilmaz, E.; Soylak, M. A Novel and Simple Deep Eutectic Solvent Based Liquid Phase Microextraction Method for Rhodamine B in Cosmetic Products and Water Samples Prior to İts Spectrophotometric Determination. Spectrochim. Acta – A: Mol. Biomol. Spectrosc. 2018, 202, 81–86. DOI: 10.1016/j.saa.2018.04.073.
  • Sridhar, K.; Inbaraj, B. S.; Chen, B.-H. An İmproved Surface Enhanced Raman Spectroscopic Method Using a Paper-Based Grape Skin-Gold Nanoparticles/Graphene Oxide Substrate for Detection of Rhodamine 6G in Water and Food. Chemosphere 2022, 301, 134702. DOI: 10.1016/j.chemosphere.2022.134702.
  • Yi, Y.; Sun, H.; Zhu, G.; Zhang, Z.; Wu, X. Sensitive Electrochemical Determination of Rhodamine B Based on Cyclodextrin-Functionalized Nanogold/Hollow Carbon Nanospheres. Anal. Methods 2015, 7, 4965–4970. DOI: 10.1039/C5AY00654F.
  • Soylak, M.; Celik, M.; Uzcan, F. Supramolecular Solvent-Based Microextraction of Sudan Orange G at Trace Levels for İts Separation, Preconcentration and Spectrophotometric Determination. Int. J. Environ. Anal. Chem. 2020, 100, 935–944. DOI: 10.1080/03067319.2019.1645842.
  • Ghasemi, E.; Kaykhaii, M. Application of Micro-Cloud Point Extraction for Spectrophotometric Determination of Malachite Green, Crystal Violet and Rhodamine B in Aqueous Samples. Spectrochim. Acta – A: Mol. Biomol. Spectrosc. 2016, 164, 93–97. DOI: 10.1016/j.saa.2016.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.