193
Views
0
CrossRef citations to date
0
Altmetric
Instrument Control

Development of a wireless passive capacitively coupled contactless conductivity detection (WPC4D) for fluidic flow detection utilizing 3D printing and PCB technologies

, , , , , & show all

References

  • Shah, P. S.; Patel, N. N.; Patel, D. M.; Patel, D. P.; Jhaveri, R. H. Recent Research in Wireless Sensor Networks: A Trend Analysis. Information and Communication Technology for Sustainable Development 2018, 87–95.
  • Li, C.; Tan, Q.; Jia, P.; Zhang, W.; Liu, J.; Xue, C.; Xiong, J. Review of Research Status and Development Trends of Wireless Passive LC Resonant Sensors for Harsh Environments. Sensors (Basel) 2015, 15, 13097–13109. DOI: 10.3390/s150613097.
  • Ong, J. B.; You, Z. Y. Z.; Mills-Beale, J.; Tan, E.; Pereles, B. D.; Ong, K. A Wireless, Passive Embedded Sensor for Real-Time Monitoring of Water Content in Civil Engineering Materials. IEEE Sensors J. 2008, 8, 2053–2058. DOI: 10.1109/JSEN.2008.2007681.
  • Scott, S.; Kovacs, A.; Gupta, L.; Katz, J.; Sadeghi, F.; Peroulis, D. 2011 Wireless Temperature Microsensors Integrated on Bearings for Health Monitoring Applications. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems 2011[Online] IEEE.
  • Coosemans, J.; Catrysse, M.; Puers, R. A Readout Circuit for an Intra-Ocular Pressure Sensor. Sens. Actuators, A 2004, 110, 432–438. DOI: 10.1016/j.sna.2003.09.015.
  • Zhang, C.; Wang, L.-F.; Huang, J.-Q.; Huang, Q.-A. An LC Type Passive Wireless Humidity Sensor System with Portable Telemetry Unit. J. Microelectromech. Syst. 2015, 24, 575–581. DOI: 10.1109/JMEMS.2014.2333747.
  • Xiong, J.; Li, Y.; Hong, Y.; Zhang, B.; Cui, T.; Tan, Q.; Zheng, S.; Liang, T. Wireless LTCC-Based Capacitive Pressure Sensor for Harsh Environment. Sens. Actuators, A 2013, 197, 30–37. DOI: 10.1016/j.sna.2013.04.007.
  • Zemann, A. J.; Schnell, E.; Volgger, D.; Bonn, G. K. Contactless Conductivity Detection for Capillary Electrophoresis. Anal. Chem. 1998, 70, 563–567. DOI: 10.1021/ac9707592.
  • Vu Quoc, T.; Quoc, T. P.; Duc, T. C.; Bui, T. T.; Kikuchi, K.; Aoyagi, M. Capacitive Sensor Based on PCB Technology for Air Bubble inside Fluidic Flow Detection. Proceedings of IEEE Sensors 2014,2014.
  • Huck, C.; Poghossian, A.; Bäcker, M.; Chaudhuri, S.; Zander, W.; Schubert, J.; Begoyan, V. K.; Buniatyan, V. V.; Wagner, P.; Schöning, M. J. Capacitively Coupled Electrolyte-Conductivity Sensor Based on High-k Material of Barium Strontium Titanate. Sens. Actuat. B: Chem. Elsevier B. V, 2014, 198, 102–109. DOI: 10.1016/j.snb.2014.02.103.
  • Elbuken, C.; Glawdel, T.; Chan, D.; Ren, C. L. Detection of Microdroplet Size and Speed Using Capacitive Sensors. Sens. Actuat. A: Phys. Elsevier B.V. 2011, 171, 55–62. DOI: 10.1016/j.sna.2011.07.007.
  • Kubán, P.; Hauser, P. C. A Review of the Recent Achievements in Capacitively Coupled Contactless Conductivity Detection. Anal. Chim. Acta 2008, 607, 15–29. DOI: 10.1016/j.aca.2007.11.045.
  • Lyu, Y.; Ji, H.; Yang, S.; Huang, Z.; Wang, B.; Li, H. New C4D Sensor with a Simulated Inductor. Sensors (Switzerland) 2016, 16, 31–35. DOI: 10.3390/s16020165.
  • Zheng, S.; Nandra, M. S.; Shih, C. Y.; Li, W.; Tai, Y. C. Resonance Impedance Sensing of Human Blood Cells. Sens. Actuat. A: Phys. 2008, 145–146, 29–36. DOI: 10.1016/j.sna.2007.10.047.
  • Lyu, Y.; Huang, J.; Huang, Z.; Ji, H.; Wang, B.; Li, H. Study on the Application of Simulated Inductor Technique to the Design of C4D Sensor. Sens. Actuat. A: Phys. Elsevier B.V. 2017, 264, 195–204. DOI: 10.1016/j.sna.2017.06.037.
  • Lv, H.; Chen, X.; Zeng, X. Optimization of Micromixer with Cantor Fractal Baffle Based on Simulated Annealing Algorithm. Chaos Solitons Fractals 2021, 148, 111048. DOI: 10.1016/j.chaos.2021.111048.
  • Lv, H.; Chen, X. New Insights into the Mechanism of Fluid Mixing in the Micromixer Based on Alternating Current Electric Heating with Film Heaters. Int. J. Heat Mass Transf. 2021, 181, 121902. DOI: 10.1016/j.ijheatmasstransfer.2021.121902.
  • Lv, H.; Chen, X.; Wang, X.; Zeng, X.; Ma, Y. A Novel Study on a Micromixer with Cantor Fractal Obstacle through Grey Relational Analysis. Int. J. Heat Mass Transf. 2022, 183, 122159. DOI: 10.1016/j.ijheatmasstransfer.2021.122159.
  • Lv, H.; Chen, X.; Li, X.; Ma, Y.; Zhang, D. Finding the Optimal Design of a Cantor Fractal-Based AC Electric Micromixer with Film Heating Sheet by a Three-Objective Optimization Approach. Int. Commun. Heat Mass Transfer 2022, 131, 105867. DOI: 10.1016/j.icheatmasstransfer.2021.105867.
  • Lee, C.-Y.; Fu, L.-M. Recent Advances and Applications of Micromixers. Sens. Actuat. B 2018, 259, 677–702. DOI: 10.1016/j.snb.2017.12.034.
  • Mačák, M.; Vyroubal, P. Numerical Simulation of Fluid Mixing in Magnetohydrodynamic Micro-Mixer. ECS Trans. 2020, 99, 449–456. DOI: 10.1149/09901.0449ecst.
  • Wu, J.; Gu, M. Microfluidic Sensing: state of the Art Fabrication and Detection Techniques. J. Biomed. Opt. 2011, 16, 080901. DOI: 10.1117/1.3607430.
  • Hassan, U.; Ghonge, T.; Reddy, B.; Patel, M.; Rappleye, M.; Taneja, I.; Tanna, A.; Healey, R.; Manusry, N.; Price, Z.; et al. A Point-of-Care Microfluidic Biochip for Quantification of CD64 Expression from Whole Blood for Sepsis Stratification. Nat. Commun. 2017, 8, 15949. DOI: 10.1038/ncomms15949.
  • Tian, T.; Li, J.; Song, Y.; Zhou, L.; Zhu, Z.; Yang, C. J. Distance-Based Microfluidic Quantitative Detection Methods for Point-of-Care Testing. Lab Chip 2016, 16, 1139–1151. DOI: 10.1039/c5lc01562f.
  • Quang, L. d.; Bui, T. T.; Hoang, A. B.; Van, T. P.; Jen, C.-P.; Chu Duc, T. Development of a Passive Capacitively Coupled Contactless Conductivity Detection (PC4D) Sensor System for Fluidic Channel Analysis toward Point-of-Care Applications. IEEE Sens. J. 2019, 19, 6371–6380. DOI: 10.1109/JSEN.2019.2908179.
  • Huang, Q. A.; Dong, L.; Wang, L. F. LC Passive Wireless Sensors toward a Wireless Sensing Platform: Status, Prospects, and Challenges. J. Microelectromech. Syst. IEEE 2016, 25, 822–841. DOI: 10.1109/JMEMS.2016.2602298.
  • Tran Thanh, H.; Vu Quoc, T.; Nguyen Van, P.; do Quang, L.; Nguyen Ngoc, A.; Tran Nhu, C.; Hoang, N. N.; Le, N. T.; Nguyen, T. T.; Bui, T.; Chu Duc, T. A Combination of 3D Printing and PCB Technologies in Microfluidic Sensing Device Fabrication. Microsyst. Technol. 2022, 1607–1619. DOI: 10.1007/s00542-022-05284-x.
  • Bonyár, A.; Sántha, H.; Ring, B.; Varga, M.; Gábor Kovács, J.; Harsányi, G. 3D Rapid Prototyping Technology (RPT) as a Powerful Tool in Microfluidic Development. Proc. Eng. 2010, 5, 291–294. DOI: 10.1016/j.proeng.2010.09.105.
  • Donvito, L.; Galluccio, L.; Lombardo, A.; Morabito, G.; Nicolosi, A.; Reno, M. Experimental Validation of a Simple, Low-Cost, T-Junction Droplet Generator Fabricated through 3D Printing. J. Micromech. Microeng. 2015, 25, 035013. DOI: 10.1088/0960-1317/25/3/035013.
  • Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: enablers and Barriers. Lab Chip 2016, 16, 1993–2013. DOI: 10.1039/c6lc00284f.
  • Kontakis, K.; Petropoulos, A.; Kaltsas, G.; Speliotis, T.; Gogolides, E. A Novel Microfluidic Integration Technology for PCB-Based Devices: Application to Microflow Sensing. Microelectron. Eng. 2009, 86, 1382–1384. DOI: 10.1016/j.mee.2009.01.088.
  • Liu, R. H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection. Anal. Chem. 2004, 76, 1824–1831. DOI: 10.1021/ac0353029.
  • Hoang, B.-A.; Tran Thanh, H.; Nguyen Thi Ngoc, H.; Pham Ngoc, T.; do Trung, K.; Le, N.-T.; Nguyen, T.-T.; Chu Duc, T.; Thanh Bui, T.; do Quang, L. 2021 A Wireless Passive Capacitively Coupled Contactless Conductivity Detection (WPC4D) for Microfluidic Flow Monitoring. 2021 IEEE Sensors 2021[Online] IEEE. DOI: 10.1109/SENSORS47087.2021.9639815.
  • Nopper, R.; Niekrawietz, R.; Reindl, L. Wireless Readout of Passive LC Sensors. IEEE Trans. Instrum. Meas. 2010, 59, 2450–2457. DOI: 10.1109/TIM.2009.2032966.
  • Multiphysics, C. Wave Optics Module. Comsol Multiphysics. 2018.
  • Buchner, R.; Hefter, G. T.; May, P. M. Dielectric Relaxation of Aqueous NaCl Solutions. J. Phys. Chem. A Am. Chem. Soc. 1999, 103, 8–9. DOI: 10.1021/jp982977k.
  • Do, L. Q.; Bui, T. T.; Tran, H. T. T.; Kikuchi, K.; Aoyagi, M.; Duc, T. C. Fluidic Platform with Embedded Differential Capacitively Coupled Contactless Conductivity Detector for Micro-Object Sensing. Int. J. Nanotechnol. 2018, 15, 24. DOI: 10.1504/IJNT.2018.089543.
  • Lee, H.-K.; Chang, S.-I.; Yoon, E. A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment. J. Microelectromech. Syst. 2006, 15, 1681–1686. DOI: 10.1109/JMEMS.2006.886021.
  • Dong, W.; Li, C.; Zhang, H.; Ding, L. Wireless Power Transfer Based on Current Non‐Linear PT‐Symmetry Principle. IET Power Electron. 2019, 12, 1783–1791. DOI: 10.1049/iet-pel.2018.5937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.