68
Views
0
CrossRef citations to date
0
Altmetric
Spectrophotometry

Highly selective sol-gel derived optical sensor using 2,6-dichlorophenolindophenol for the sensitive determination of aqueous iron(III)

, &

References

  • Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-Based Optical Chemical Sensors for the Detection of Heavy Metals in Water: Recent Advances and Challenges. TrAC, Trends Anal. Chem. 2018, 100, 155–166. DOI: 10.1016/j.trac.2018.01.002.
  • Celestina, J. J.; Alphonse, L.; Tharmaraj, P.; Sheela, C. D. Novel Triazine-Based Colorimetric and Fluorescent Sensor for Highly Selective Detection of Al3. J. Sci: Adv. Mater. Devices 2019, 4, 237–244. DOI: 10.1016/j.jsamd.2019.05.001.
  • Yari, A.; Abdoli, H. A. Sol–Gel Derived Highly Selective Optical Sensor for Sensitive Determination of the Mercury(II) Ion in Solution. J. Hazard Mater. 2010, 178, 713–717. DOI: 10.1016/j.jhazmat.2010.01.146.
  • Dashtian, K.; Zare-Dorabei, R. Preparation and Characterization of a Novel Optical Chemical Sensor for Determination of Trace Amounts of Praseodymium Ion by UV/Vis Spectrophotometry. Sensors Actuators B Chem. 2017, 242, 586–594. DOI: 10.1016/j.snb.2016.11.087.
  • Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Natale, C. D. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. DOI: 10.1021/acs.chemrev.6b00361.
  • Sodkhomkhum, R.; Masik, M.; Watchasit, S.; Suksai, C.; Boonmak, J.; Youngme, S.; Wanichacheva, N.; Ervithayasuporn, V. Imidazolylmethylpyrene Sensor for Dual Optical Detection of Explosive Chemical: 2,4,6-Trinitrophenol. Sensors Actuators B Chem. 2017, 245, 665–673. DOI: 10.1016/j.snb.2017.01.120.
  • Latifi, S. M.; Fathi, M.; Sharifnabi, A.; Varshosaz, J. In Vitro Characterization of a Sol–Gel Derived in Situ Silica-Coated Silicate and Carbonate Co-Doped Hydroxyapatite Nanopowder for Bone Grafting. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 272–278. DOI: 10.1016/j.msec.2017.02.078.
  • Yari, A.; Dinarvand, M. Sol-Gel Film Doped with Bromopyrogallol Red as a Highly Sensitive Sensing Element for a New pH Optical Sensor. J. Iran. Chem. Soc. 2011, 8, 1091–1097. DOI: 10.1007/bf03246567.
  • Owens, G. J.; Singh, R. K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J. C. Sol–Gel Based Materials for Biomedical Applications. Progr. Mater. Sci. 2016, 77, 1–79. DOI: 10.1016/j.pmatsci.2015.12.001.
  • Preparation and Characterization of Ultra-Thin Sol–Gel Films. Thin Solid Films 2007, 515, 4624–4628. DOI: 10.1016/j.tsf.2006.11.117.
  • Wright, J. D.; Sommerdijk, N. A. J. M. Sol-Gel Materials: Chemistry and Applications. Amsterdam: Gordon and Breach Science Publishers, 2001. 125 p. (Advanced chemistry texts). ISBN 90-5699-326-7.
  • Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. DOI: 10.1039/c5mh00260e.
  • Wada, Y.; van Beek, L. P. H.; van Kempen, C. M.; Reckman, J. W. T. M.; Vasak, S.; Bierkens, M. F. P. Global Depletion of Groundwater Resources. Geophys. Res. Lett. 2010, 37, L20402. DOI: 10.1029/2010GL044571.
  • Barcellini, W.; Fattizzo, B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis. Markers 2015, 2015, 635670. DOI: 10.1155/2015/635670.
  • Fibach, E.; Rachmilewitz, E. A. Iron Overload in Hematological Disorders. Presse. Med. 2017, 46, e296–e305. DOI: 10.1016/j.lpm.2017.10.007.
  • Cassat, J. E.; Skaar, E. P. Iron in Infection and Immunity. Cell Host Microb. 2013, 13, 509–519. DOI: 10.1016/j.chom.2013.04.010.
  • Jonker, F. A. M.; Te Poel, E.; Bates, I.; Boele van Hensbroek, M. Anaemia, Iron Deficiency and Susceptibility to Infection in Children in Sub-Saharan Africa, Guideline Dilemmas. Br. J. Haematol. 2017, 177, 878–883. DOI: 10.1111/bjh.14593.
  • Su, C. K.; Chen, Y. T.; Sun, Y. C. Speciation of Trace Iron in Environmental Water Using 3D-Printed Minicolumns Coupled with Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2019, 146, 835–841. DOI: 10.1016/j.microc.2019.02.015.
  • Costa, R. C.; de, C.; Araújo, A. N. Determination of Fe(III) and Total Fe in Wines by Sequential Injection Analysis and Flame Atomic Absorption Spectrometry. Anal. Chim. Acta 2001, 438, 227–233. DOI: 10.1016/S0003-2670(01)00845-5.
  • Radu, T.; Iacovita, C.; Benea, D.; Turcu, R. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles. Appl. Surf. Sci. 2017, 405, 337–343. DOI: 10.1016/j.apsusc.2017.02.002.
  • Cheize, M.; Sarthou, G.; Croot, P. L.; Bucciarelli, E.; Baudoux, A. C.; Baker, A. R. Iron Organic Speciation Determination in Rainwater Using Cathodic Stripping Voltammetry. Anal. Chim. Acta 2012, 736, 45–54. DOI: 10.1016/j.aca.2012.05.011.
  • Boiteau, R. M.; Fitzsimmons, J. N.; Repeta, D. J.; Boyle, E. A. Detection of Iron Ligands in Seawater and Marine Cyanobacteria Cultures by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2013, 85, 4357–4362. DOI: 10.1021/ac3034568.
  • Lin, M.; Hu, X.; Pan, D.; Han, H. Determination of Iron in Seawater: From the Laboratory to in Situ Measurements. Talanta 2018, 188, 135–144. DOI: 10.1016/j.talanta.2018.05.071.
  • Jahn, B.; Jonasson, N. S. W.; Hu, H.; Singer, H.; Pol, A.; Good, N. M.; den Camp, H. J. M. O.; Martinez-Gomez, N. C.; Daumann, L. J. Understanding the Chemistry of the Artificial Electron Acceptors PES, PMS, DCPIP and Wurster’s Blue in Methanol Dehydrogenase Assays. J. Biol. Inorg. Chem. 2020, 25, 199–212. DOI: 10.1007/s00775-020-01752-9.
  • Gavrilenko, N. A.; Sukhanov, A. V.; Mokhova, O. V. Redox and Acid-Base Properties of 2,6-Dichlorophenolindophenol Immobilized on a Polymethacrylate Matrix. J. Anal. Chem. 2010, 65, 17–20. DOI: 10.1134/S1061934810010041.
  • Tang, H. T.; Hajizadeh, K.; Halsall, H. B.; Heineman, W. R. Flow-Injection Analysis with Electrochemical Detection of Reduced Nicotinamide Adenine Dinucleotide Using 2,6-Dichloroindophenol as a Redox Coupling Agent. Anal. Biochem. 1991, 192, 243–250. DOI: 10.1016/0003-2697(91)90215-F.
  • Yari, A.; Kargosha, K. Simple Photometric Determination of Free Cyanide Ion in Aqueous Solution with 2,6-Dichlorophenolindophenol. Cent. Eur. J. Chem. 2006, 4, 329–337. DOI: 10.2478/S11532-006-0007-3.
  • Wojdyr, M. IUCr. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. DOI: 10.1107/S0021889810030499.
  • Yari, A.; Gholivand, M. B.; Rahhedayat, F. Development and Characterization of a New Nickel(II) Ion Selective Optode Based on 2-Amino-1-Cyclopentene-Dithiocarboxylic Acid. Measurement 2011, 44, 1691–1696. DOI: 10.1016/j.measurement.2011.07.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.