4
Views
2
CrossRef citations to date
0
Altmetric
Articles

Inhibition of NAD(P)H Oxidase Alleviates Impaired NOS-dependent Responses of Pial Arterioles in Type 1 Diabetes Mellitus

, , , &
Pages 567-575 | Received 25 Jan 2006, Accepted 06 Jun 2006, Published online: 08 Apr 2010

REFERENCES

  • Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 2005; 36: 1040–1046, [INFOTRIEVE], [CSA]
  • Alexander J S, Elrod J W. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 2002; 200: 561–574, [INFOTRIEVE], [CSA]
  • Alonso-Galicia M, Brands M W, Zappe D H, Hall J E. Hypertension in obese Zucker rats: role of angiotensin II and adrenergic activity. Hypertension 1996; 28: 1047–1054, [INFOTRIEVE], [CSA]
  • Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996; 271: C1424–C1437, [INFOTRIEVE], [CSA]
  • Bengtsson S HM, Gulluyan L M, Dusting G J, Drummond G R. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 2003; 30: 849–854, [INFOTRIEVE], [CSA]
  • Beswick R A, Dorrance A M, Leite R, Webb R C. NADH-NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 2001; 38: 1107–1111, [INFOTRIEVE], [CSA]
  • Brandes R P, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 2005; 65: 16–27, [INFOTRIEVE], [CSA]
  • Burkey J L, Campanale K M, O'Bannon D D, Cramer J W, Farid N A. Disposition of LY333531, a selective protein kinase C beta inhibitor, in the Fischer 344 rat and beagle dog. Xenobio 2002; 32: 1045–1052, [CSA]
  • Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840–844, [INFOTRIEVE], [CSA]
  • Chabrashvili T, Tojo A, Onosato M L, Kitiyakara C, Quinn M T, Fujita T, Welch W J, Wilcox C S. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 2002; 39: 269–274, [INFOTRIEVE], [CSA]
  • Cheetham C, Collis J, O'Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes. J Am Coll Cardiol 2000; 36: 1461–1466, [INFOTRIEVE], [CSA]
  • Coppey L J, Gellett J S, Davidson E P, Yorek M A. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic Res 2003; 37: 33–40, [INFOTRIEVE], [CSA]
  • Creager M A, Luscher T F, Cosentino F, Beckman J A. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108: 1527–1532, [INFOTRIEVE], [CSA]
  • De Keulenaer G W, Chappell D C, Ishizaka N, Nerem R M, Alexander R W, Griendling K K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide producing NADH oxidase. Circ Res 1998; 82: 1094–1101, [INFOTRIEVE], [CSA]
  • Didion S P, Faraci F M. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am JP hysiol 2002; 282: H688–H695, [CSA]
  • Didion S P, Ryan M J, Didion L A, Fegan P E, Sigmund C D, Faraci F M. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 2002; 91: 938–944, [INFOTRIEVE], [CSA]
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2001; 82: 47–95, [CSA]
  • Duntas L, Keck F S, Haug C, Hetzel W, Wolf C F, Rosenthal J, Pfeiffer E F. Serum angiotensin-converting enzyme activity and active renin plasma concentrations in insulin-dependent diabetes mellitus. Diab Res Clin Prac 1992; 16: 203–208, [CSA]
  • Fukui T, Ishizaka N, Rajagopalan S, Laursen J B, Capers Q, Taylor W R, Harrison D G, de Leon H, Wilcox J N, Griendling K K. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80: 45–51, [INFOTRIEVE], [CSA]
  • Griendling K K, Minieri C A, Ollerenshaw J D, Alexander R W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148, [INFOTRIEVE], [CSA]
  • Griendling K K, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501, [INFOTRIEVE], [CSA]
  • Gryglewski R J, Palmer R MJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456, [INFOTRIEVE], [CSA]
  • Hamilton C A, Brosnan M J, Al-Benna S, Berg G, Dominiczak A F. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension 2002; 40: 755–762, [INFOTRIEVE], [CSA]
  • Hamilton C A, Brosnan M J, McIntyre M, Graham D, Dominiczak A F. Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 2001; 37: 529–534, [INFOTRIEVE], [CSA]
  • Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1991; 261: H1086–H1094, [INFOTRIEVE], [CSA]
  • Hink U, Li H, Mollnau H, Oelse M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl R AK, Warnholtz A, Meinertz T, Griendling K, Harrison D G, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001; 88: e14–e22, [INFOTRIEVE], [CSA]
  • Inoguchi T, Tsubouchi H, Etoh T, Kakimoto M, Sonta T, Utsumi H, Sumimoto H, Yu H Y, Sonoda N, Inuo M, Sato N, Sekiguchi N, Kobayashi K, Nawata H. A possible target of antioxidative therapy for diabetic vascular complications–vascular NAD(P)H oxidase. Curr Med Chem 2003; 10: 1759–1764, [INFOTRIEVE], [CSA]
  • Kim D E, Suh Y S, Lee M S, Kim K Y, Lee J H, Lee H S, Hong K W, Kim C D. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 2002; 33: 2687–2691, [INFOTRIEVE], [CSA]
  • Kono H, Rusyn I, Uesugi T, Yamashina S, Connor H D, Dikalova A, Mason R P, Thurman R G. Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol 2001; 280: G1005–G1012, [CSA]
  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland S M, Harrison D G. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002; 40: 511–515, [INFOTRIEVE], [CSA]
  • Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant S L, Lambeth J D, Griendling K K. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001; 88: 888–894, [INFOTRIEVE], [CSA]
  • Lieberman J, Sastre A. Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Ann Int Med 1980; 93: 825–826, [INFOTRIEVE], [CSA]
  • Mayhan W G. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol 1989; 256: H621–H625, [INFOTRIEVE], [CSA]
  • Mayhan W G. Impairment of endothelium-dependent dilatation of the basilar artery during diabetes mellitus. Brain Res 1992; 580: 297–302, [INFOTRIEVE], [CSA]
  • Mayhan W G. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res 1997; 760: 204–209, [INFOTRIEVE], [CSA]
  • Mayhan W G, Heistad D D. Permeability of blood-brain barrier to various sized molecules. Am J Physiol 1985; 248: H712–H718, [INFOTRIEVE], [CSA]
  • Mohazzab K M, Kaminski P M, Wolin M S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266: H2568–H2572, [INFOTRIEVE], [CSA]
  • Nassar T, Kadery B, Lotan C, Da'as N, Kleinman Y, Haj-Yehia A. Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol 2002; 436: 111–118, [INFOTRIEVE], [CSA]
  • O'Driscoll G, Green D, Rankin J, Stanton K, Taylor R. Improvement in endothelial function by angiotensin converting enzyme inhibition to insulin-dependent diabetes mellitus. J Clin Invest 1997; 100: 678–684, [INFOTRIEVE], [CSA]
  • Ohishi K, Carmines P K. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. J Am Soc Nephrol 1995; 5: 1559–1566, [INFOTRIEVE], [CSA]
  • Paravicini T M, Chrissobolis S, Drummond G R, Sobey C G. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 2004; 35: 584–589, [INFOTRIEVE], [CSA]
  • Pieper G M, Mei D A, Langenstroer P, O'Rourke S T. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol Heart Circ Physiol 1992; 263: H676–H680, [CSA]
  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman B A, Griendling K K, Harrison D G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations in vascular tone. J Clin Invest 1996; 97: 1916–1923, [INFOTRIEVE], [CSA]
  • Rey F E, Li X C, Carretero O A, Garvin J L, Pagano P J. Perivascular superoxide anion contributes to impairment of endothelium-dependent relaxation: role of gp91(phox). Circulation 2002; 106: 2497–2502, [INFOTRIEVE], [CSA]
  • Schernthaner G, Schwarzer C, Kuzmits R, Muller M M, Klemen U, Freyler H. Increased angiotensin-converting enzyme activities in diabetes mellitus: analysis of diabetes type, state of metabolic control and occurrence of diabetes vascular disease. J Clin Pathol 1984; 37: 307–312, [INFOTRIEVE], [CSA]
  • Suh Y A, Arnold R S, Lassegue B, Shi J, Xu X, Sorescu D, Chung A B, Griendling K K, Lambeth J D. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401: 79–82, [INFOTRIEVE], [CSA]
  • Sun H, Patel K P, Mayhan W G. Tetrahydrobiopterin, a cofactor for NOS, improves endothelial dysfunction during chronic alcohol consumption. Am J Physiol 2001; 281: H1863–H1869, [CSA]
  • Trauernicht A K, Sun H, Patel K P, Mayhan W G. Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats. Stroke 2003; 34: 2698–2703, [INFOTRIEVE], [CSA]
  • Ulker S, McMaster D, McKeown P P, Bayraktutan U. Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res 2003; 59: 488–500, [INFOTRIEVE], [CSA]
  • Ungvari Z, Csiszar A, Huang A, Kaminski P M, Wolin M S, Koller A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 2003; 108: 1253–1258, [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.