40
Views
1
CrossRef citations to date
0
Altmetric
Articles

Physiology and Pathobiology of the Pericyte-Containing Retinal Microvasculature: New Developments

Pages 1-10 | Received 22 Feb 2006, Accepted 15 May 2006, Published online: 10 Jul 2009

REFERENCES

  • Brazitikos P D, Pournaras C J, Munoz J L, Tsacopoulos M. Microinjection of L-lactate in the preretinal vitreous induces segmental vasodilation in the inner retina of miniature pigs. Invest Ophthalmol Vis Sci 1993; 34: 1744–1752
  • Buttery R G, Hinrichsen C F, Weller W L, Haight J R. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res 1991; 31: 169–187
  • Cao W, Li F, Steinberg R H, La Vail M M. Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 2001; 72: 591–604
  • Chase J. The evolution of retinal vascularization in mammals: a comparison of vascular and avascular retinae. Ophthalmology 1982; 89: 1518–1525
  • Cogan D, Toussaint D, Kuwabara T. Retinal vascular patterns. IV: diabetic retinopathy. Arch Ophthalmol 1961; 166: 366–378
  • Dodge A B, Hechtman H B, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 1991; 18: 180–188
  • Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006; 26: 613–624
  • Favard C, Simon A, Vigny A, Nguyen-Legros J. Ultrastructural evidence for a close relationship between dopamine cell processes and blood capillary walls in Macaca monkey and rat retina. Brain Res 1990; 523: 127–133
  • Friedman E, Smith T R, Kuwabara T. Retinal microcirculation in vivo. Invest Ophthalmol 1964; 3: 217–226
  • Funk R H. Blood supply of the retina. Ophthalmic Res 1997; 29: 320–325
  • Haefliger I O, Zschauer A, Anderson D R. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 1994; 35: 991–997
  • Heath A P, Kang S S, Philoppou D. Glucose, glucose-6-phosphate, lactate and pyruvate content in the retina, blood and liver of streptozotocin-diabetic rats fed sucrose- and starch-rich diets. Diabeologica 1975; 11: 57–62
  • Hirschi K K, D'Amore P A. Pericytes in the microvasculature. Cardiovasc Res 1996; 32: 687–698
  • Hughes S J, Wall N, Scholfield C N, McGeown J G, Gardiner T A, Stitt A W, Curtis T M. Advanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2 +]i signalling and contraction in retinal microvascular pericytes. Mol Vis 2004; 10: 996–1004
  • Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu D M, Puro D G. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J Physiol 2004; 561: 671–683
  • Kawamura H, Oku H, Li Q, Sakagami K, Puro D G. Endothelin-induced changes in the physiology of retinal pericytes. Invest Ophthalmol Vis Sci 2002; 43: 882–888
  • Kawamura H, Sugiyama T, Wu D M, Kobayashi M, Yamanishi S, Katsumura K, Puro D G. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 2003; 551: 787–799
  • Kelley C, D'Amore P, Hechtman H B, Shepro D. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 1987; 104: 483–490
  • Kelley C, D'Amore P, Hechtman H B, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil 1988; 9: 184–194
  • Koya D, King G L. Protein kinase C activation and the development of diabetic complications. Diabetes 1998; 47: 859–866
  • Li Q, Puro D G. Adenosine activates ATP-sensitive K+ currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 2001; 907: 93–99
  • Matsugi T, Chen Q, Anderson D R. Adenosine-induced relaxation of cultured bovine retinal pericytes. Invest Ophthalmol Vis Sci 1997; 38: 2695–2701
  • Matsushita K, Puro D G. Topographical heterogeneity of KIR currents in pericyte-containing microvessels of the rat retina: effect of diabetes. J Physiol 2006; 573: 483–495
  • McGinty A, Scholfield C N, Liu W H, Anderson P, Hoey D E, Trimble E R. Effect of glucose on endothelin-1-induced calcium transients in cultured bovine retinal pericytes. J Biol Chem 1999; 274: 25250–25253
  • Mizutani M, Kern T S, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996; 97: 2883–2890
  • Nicoletti R, Venza I, Ceci G, Visalli M, Teti D, Reibaldi A. Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br J Ophthalmol 2003; 87: 1038–1042
  • North R A. Molecular physiology of P2X receptors. Physiol Rev 2002; 82: 1013–1067
  • Oku H, Kodama T, Sakagami K, Puro D G. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest Ophthalmol Vis Sci 2001; 42: 1915–1920
  • Quignard J F, Harley E A, Duhault J, Vanhoutte P M, Feletou M. K+ channels in cultured bovine retinal pericytes: effects of beta-adrenergic stimulation. J Cardiovasc Pharmacol 2003; 42: 379–388
  • Sakagami K, Kawamura H, Wu D M, Puro D G. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc Res 2001; 62: 196–203
  • Sakagami K, Kodama T, Puro D G. PDGF-induced coupling of function with metabolism in microvascular pericytes of the retina. Invest Ophthalmol Vis Sci 2001; 42: 1939–1944
  • Sakagami K, Wu D M, Puro D G. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol 1999; 521: 637–650
  • Schonfelder U, Hofer A, Paul M, Funk R H. In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 1998; 56: 22–29
  • Shepro D, Morel N M. Pericyte physiology. FASEB J 1993; 7: 1031–1038
  • Stitt A W, Curtis T M. Advanced glycation and retinal pathology during diabetes. Pharmacol Rep 2005; 57: 156–168, Suppl
  • Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro D G. Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol Cell Physiol 2005; 288: C568–C576
  • Sugiyama T, Kobayashi M, Kawamura H, Li Q, Puro D G. Enhancement of P2X7-induced pore formation and apoptosis: an early effect of diabetes on the retinal microvasculature. Invest Ophthalmol Vis Sci 2004; 45: 1026–1032
  • Wiederholt M, Berwick S., Helbig H. Electrophysiological properties of cultured retinal capillary pericytes. Prog Retin Eye Res 1995; 14: 437–451
  • Winkler B S. A quantitative assessment of glucose metabolism in the isolated retina. Les Seminaires Ophthalmologiques d'IPSEN: Vision et Adaptation, C Y Doly, M T Droy-LeFaix. Elsevier, Amsterdam 1995; 78–96
  • Wu D M, Kawamura H, Li Q, Puro D G. Dopamine activates ATP-sensitive K+ currents in rat retinal pericytes. Vis Neurosci 2001; 18: 935–940
  • Wu D M, Kawamura H, Sakagami K, Kobayashi M, Puro D G. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 2003; 284: H2083–H2090
  • Wu D M, Miniami M, Kawamura H, Puro D G. Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation, 2006; 13: 353–363
  • Yamanishi S, Katsumura K, Kobayashi T, Puro D G. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 2006; 290: H925–H934
  • Ye X D, Laties A M, Stone R A. Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 1990; 31: 1731–1737
  • Zschauer A O, Davis E B, Anderson D R. Glaucoma, capillaries and pericytes, 4: beta-adrenergic activation of cultured retinal pericytes. Ophthalmologica 1996; 210: 276–279

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.