16
Views
1
CrossRef citations to date
0
Altmetric
Original

Regulation of Muscle Blood Flow in Obesity

&
Pages 273-288 | Received 01 Dec 2006, Accepted 09 Jan 2007, Published online: 10 Jul 2009

REFERENCES

  • Agapitov A V, Correia M L, Sinkey C A, Dopp J M, Haynes W G. Impaired skeletal muscle and skin microcirculatory function in human obesity. J Hypertens 2002; 20: 1401–1405
  • Alvarez G E, Beske S D, Ballard T P, Davy K P. Sympathetic neural activation in visceral obesity. Circulation 2002; 106: 2533–2536
  • Archer S L, Huang J MC, Hampl V, Nelson D P, Shultz P J, Weir E K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. PNAS 1994; 91: 7583–7587
  • Arvola P, Wu X, Kahonen M, Makynen H, Riutta A, Mucha I, Solakivi T, Kainulainen H, Porsti I. Exercise enhances vasorelaxation in experimental obesity associated hypertension. Cardiovasc Res 1999; 43: 992–1002
  • Bagi Z, Koller A. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J Vasc Res 2003; 40: 47–57
  • Beaty O, Donald D E. Contribution of prostaglandins to muscle blood flow in anesthetized dogs at rest, during exercise, and following inflow occlusion. Circ Res 1979; 44: 67–75
  • Beckman J A, Goldfine A B, Gordon M B, Creager M A. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 2001; 103: 1618–1623
  • Berg B R, Cohen K D, Sarelius I H. Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am J Physiol Heart Circ Physiol 1997; 272: H2693–H2700
  • Boegehold M A. Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle. Am J Physiol Heart Circ Physiol 1996; 271: H387–H395
  • Brook R D, Bard R L, Rubenfire M, Ridker P M, Rajagopalan S. Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults. Am J Cardiol 2001; 88: 1264–1269
  • Bruning T A, Chang P C, Blauw G J, Vermeij P, van Zwieten P A. Serotonin-induced vasodilatation in the human forearm is mediated by the “nitric oxide-pathway”: no evidence for involvement of the 5-HT3-receptor. J Cardiovasc Pharmacol 1993; 22: 44–51
  • Brzezinska A K, Gebremedhin D, Chilian W M, Kalyanaraman B, Elliott S J. Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 2000; 278: H1883–H1890
  • Burnham M P, Johnson I T, Weston A H. Reduced Ca2+-dependent activation of large-conductance Ca2+-activated K+ channels from arteries of type 2 diabetic Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 2006; 290: H1520–H1527
  • Campbell W B, Gebremedhin D, Pratt P F, Harder D R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996; 78: 415–423
  • Campbell W B, Harder D R. Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circ Res 1999; 84: 484–488
  • Carl A, Lee H K, Sanders K M. Regulation of ion channels in smooth muscles by calcium. Am J Physiol Cell Physiol 1996; 271: C9–C34
  • Carrier G O, Fuchs L C, Winecoff A P, Giulumian A D, White R E. Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels. Am J Physiol Heart Circ Physiol 1997; 273: H76–H84
  • Clifford P S, Hellsten Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 2004; 97: 393–403
  • Clifton P M, Keogh J B, Foster P R, Noakes M. Effect of weight loss on inflammatory and endothelial markers and FMD using two low-fat diets. Int J Obes 2005; 29: 1445–1451
  • Cohen K D, Sarelius I H. Muscle contraction under capillaries in hamster muscle induces arteriolar dilatation via KATP channels and nitric oxide. J Physiol (Lond) 2002; 539: 547–555
  • Coleman H A, Tare M, Parkington H C. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 2004; 31: 641–649
  • Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, Kouroedov A, Delli Gatti C, Joch H, Volpe M, Luscher T F. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 2003; 107: 1017–1023
  • Cuevas A M, Guasch V, Castillo O, Irribarra V, Mizon C, San Martin A, Strobel P, Perez D, Germain A M, Leighton F. A high-fat diet induces and red wine counteracts endothelial dysfunction in human volunteers. Lipids 2000; 35: 143–148
  • Daniel T O, Ives H E. Endothelial control of vascular function. News Physiol Sci 1989; 4: 139–142
  • Davies P F. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75: 519–560
  • Davis M J, Hill M A. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 1999; 79: 387–423
  • Davy K P, Hall J E. Obesity and hypertension: two epidemics or one?. Am J Physiol Regul Integr Comp Physiol 2004; 286: R803–R813
  • Dawes M, Sieniawska C, Delves T, Dwivedi R, Chowienczyk P J, Ritter J M. Barium reduces resting blood flow and inhibits potassium-induced vasodilation in the human forearm. Circulation 2002; 105: 1323–1328
  • Dengel D R, Kelly A S, Olson T P, Kaiser D R, Dengel J L, Bank A J. Effects of weight loss on insulin sensitivity and arterial stiffness in overweight adults. Metabolism 2006; 55: 907–911
  • Dimitropoulou C, Han G, Miller A W, Molero M, Fuchs L C, White R E, Carrier G O. Potassium (BKCa) currents are reduced in microvascular smooth muscle cells from insulin-resistant rats. Am J Physiol Heart Circ Physiol 2002; 282: H908–H917
  • Dwivedi R, Saha S, Chowienczyk P J, Ritter J M. Block of inward rectifying K+ channels (KIR) inhibits bradykinin-induced vasodilatation in human forearm resistance vasculature. Arterioscler Thromb Vasc Biol 2005; 25: e7–e9
  • Edwards G, Dora K A, Gardener M J, Garland C J, Weston A H. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269–272
  • Erdei N, Toth A, Pasztor E T, Papp Z, Edes I, Koller A, Bagi Z. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion. Am J Physiol Heart Circ Physiol 2006; 291: H2107–H2115
  • Erdos B, Miller A W, Busija D W. Alterations in KATP and KCa channel function in cerebral arteries of insulin-resistant rats. Am J Physiol Heart Circ Physiol 2002; 283: H2472–H2477
  • Erdos B, Simandle S A, Snipes J A, Miller A W, Busija D W. Potassium channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by reactive oxygen species. Stroke 2004; 35: 964–969
  • Erdos B, Snipes J A, Miller A W, Busija D W. Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 2004; 53: 1352–1359
  • Fitzgerald S M, Kemp-Harper B K, Tare M, Parkington H C. Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes. Clin Exp Pharmacol Physiol 2005; 32: 482–487
  • Fleming I, Bauersachs J, Fisslthaler B, Busse R. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 1998; 82: 686–695
  • Frisbee J C. Enhanced arteriolar α-adrenergic constriction impairs dilator responses and skeletal muscle perfusion in obese Zucker rats. J Appl Physiol 2004; 97: 764–772
  • Frisbee J C. Hypertension-independent microvascular rarefaction in the obese Zucker rat model of the metabolic syndrome. Microcirculation 2005; 12: 383–392
  • Frisbee J C. Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 2001; 281: H1568–H1574
  • Frisbee J C. Impaired skeletal muscle perfusion in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2003; 285: R1124–R1134
  • Frisbee J C. Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2005; 289: R307–R316
  • Frisbee J C. Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats. Am J Physiol Heart Circ Physiol 2003; 285: H104–H111
  • Frisbee J C, Maier K G, Stepp D W. Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 2002; 283: H2160–H2168
  • Frisbee J C, Roman R J, Krishna U M, Falck J R, Lombard J H. 20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. Am J Physiol Heart Circ Physiol 2001; 280: H1066–H1074
  • Frisbee J C, Samora J B, Peterson J, Bryner R. Exercise training blunts microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ Physiol 2006; 291: H2483–H2492
  • Frisbee J C, Stepp D W. Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 2001; 281: H1304–H1311
  • Fulton D, Harris M B, Kemp B E, Venema R C, Marrero M B, Stepp D W. Insulin resistance does not diminish eNOS expression, phosphorylation, or binding to HSP-90. Am J Physiol Heart Circ Physiol 2004; 287: H2384–H2393
  • Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376
  • Green D J, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol (Lond) 2004; 561: 1–25
  • Gutterman D D, Miura H, Liu Y. Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 2005; 25: 671–678
  • Hashimoto M, Akishita M, Eto M, Kozaki K, Ako J, Sugimoto N, Yoshizumi M, Toba K, Ouchi Y. The impairment of flow-mediated vasodilatation in obese men with visceral fat accumulation. Int J Obes Relat Metab Disord 1998; 22: 477–484
  • Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Chayama K, Oshima T. Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens 2001; 14: 1038–1045
  • Hogikyan R V, Galecki A T, Pitt B, Halter J B, Greene D A, Supiano M A. Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes independent of obesity. J Clin Endocrinol Metab 1998; 83: 1946–1952
  • Hoshiyama M, Li B, Yao J, Harada T, Morioka T, Oite T. Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron Exp Nephrol 2003; 95: e62–e68
  • Huang A, Sun D, Kaley G, Koller A. Superoxide released to high intra-arteriolar pressure reduces nitric oxide–mediated shear stress– and agonist-induced dilations. Circ Res 1998; 83: 960–965
  • Ignarro L J, Buga G M, Wood K S, Byrns R E, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. PNAS 1987; 84: 9265–9269
  • Jackson W F. Arteriolar tone is determined by activity of ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 1993; 265: H1797–H1803
  • Jackson W F. Ion channels and vascular tone. Hypertension 2000; 35: 173–178
  • Jackson W F. Potassium channels in the peripheral microcirculation. Microcirculation 2005; 12: 113–127
  • Jackson W F, Blair K L. Characterization and function of Ca2+-activated K+ channels in arteriolar muscle cells. Am J Physiol Heart Circ Physiol 1998; 274: H27–H34
  • Jackson W F, Konig A, Dambacher T, Busse R. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 1993; 264: H238–H243
  • Jasperse J L, Laughlin M H. Flow-induced dilation of rat soleus feed arteries. Am J Physiol Heart Circ Physiol 1997; 273: H2423–H2427
  • Jeremy J Y, Mikhailidis D P, Dandona P. Simulating the diabetic environment modifies in vitro prostacyclin synthesis. Diabetes 1983; 32: 217–221
  • Kamata K, Miyata N, Kasuya Y. Functional changes in potassium channels in aortas from rats with streptozotocin-induced diabetes. Eur J Pharmacol 1989; 166: 319–323
  • Kamper A M, Paul L C, Blauw G J. Prostaglandins are involved in acetylcholine- and 5-hydroxytryptamine-induced, nitric oxide-mediated vasodilatation in human forearm. J Cardiovasc Pharmacol 2002; 40: 922–929
  • Karagiannis J, Reid J J, Darby I, Roche P, Rand M J, Li C G. Impaired nitric oxide function in the basilar artery of the obese Zucker rat. J Cardiovasc Pharmacol 2003; 42: 497–505
  • Karamouzis M, Karamouzis I, Vamvakoudis E, Ampatzidis G, Christoulas K, Angelopoulou N, Mandroukas K. The response of muscle interstitial prostaglandin E2(PGE2), prostacyclin I2(PGI2) and thromboxane A2(TXA2) levels during incremental dynamic exercise in humans determined by in vivo microdialysis. Prostaglandins Leukot Essent Fatty Acids 2001; 64: 259–263
  • Karamouzis M, Langberg H, Skovgaard D, Bulow J, Kjaer M, Saltin B. In situ microdialysis of intramuscular prostaglandin and thromboxane in contracting skeletal muscle in humans. Acta Physiol Scand 2001; 171: 71–76
  • Katakam P VG, Tulbert C D, Snipes J A, Erdos B, Miller A W, Busija D W. Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol 2005; 288: H854–H860
  • Kelly A S, Wetzsteon R J, Kaiser D R, Steinberger J, Bank A J, Dengel D R. Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise. J Pediatr 2004; 145: 731–736
  • Kilbom A, Wennmalm A. Endogenous prostaglandins as regulators of blood flow in man: effect of indomethacin on reactive and functional hyperaemia. J Physiol (Lond) 1976; 257: 109–121
  • Kim S H, Park K W, Kim Y S, Oh S, Chae I H, Kim H S, Kim C H. Effects of acute hyperglycemia on endothelium-dependent vasodilation in patients with diabetes mellitus or impaired glucose metabolism. Endothelium 2003; 10: 65–70
  • Kingwell B A. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J 2000; 14: 1685–1696
  • Kingwell B A, Formosa M, Muhlmann M, Bradley S J, McConell G K. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care 2003; 26: 899–904
  • Koller A, Dornyei G, Kaley G. Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins. Am J Physiol Heart Circ Physiol 1998; 275: H831–H836
  • Koller A, Kaley G. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am J Physiol Heart Circ Physiol 1990; 258: H916–H920
  • Kosmas E N, Levy R D, Hussain S N. Acute effects of glyburide on the regulation of peripheral blood flow in normal humans. Eur J Pharmacol 1995; 274: 193–199
  • Kuboki K, Jiang Z Y, Takahara N, Ha S W, Igarashi M, Yamauchi T, Feener E P, Herbert T P, Rhodes C J, King G L. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 2000; 101: 676–681
  • Kuchan M J, Frangos J A. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol Cell Physiol 1994; 266: C628–C636
  • Kuniyoshi F HS, Trombetta I C, Batalha L T, Rondon M UPB, Laterza M C, Gowdak M MG, Barretto A CP, Halpern A, Villares S MF, Lima E G, Negrao C E. Abnormal neurovascular control during sympathoexcitation in obesity. Obesity Res 2003; 11: 1411–1419
  • Laight D W, Desai K M, Gopaul N K, Anggard E E, Carrier M J. F2-isoprostane evidence of oxidant stress in the insulin resistant, obese Zucker rat: effects of vitamin E. Eur J Pharmacol 1999; 377: 89–92
  • Laight D W, Kengatharan K M, Gopaul N K, Anggard E E, Carrier M J. Investigation of oxidant stress and vasodepression to glyceryl trinitrate in the obese Zucker rat in vivo. Br J Pharmacol 1998; 125: 895–901
  • Landino L M, Crews B C, Timmons M D, Morrow J D, Marnett L J. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. PNAS 1996; 93: 15069–15074
  • Lange A, Gebremedhin D, Narayanan J, Harder D. 20-hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 1997; 272: 27345–27352
  • Ledoux J, Werner M E, Brayden J E, Nelson M T. Calcium-activated potassium channels and the regulation of vascular tone. Physiology 2006; 21: 69–78
  • Lee I K, Kim H S, Bae J H. Endothelial dysfunction: its relationship with acute hyperglycaemia and hyperlipidemia. Int J Clin Pract Suppl 2002; 129: 59–64
  • Lu T, Wang X-L, He T, Zhou W, Kaduce T L, Katusic Z S, Spector A A, Lee H-3. Impaired arachidonic acid-mediated activation of large-conductance Ca2+-activated K+ channels in coronary arterial smooth muscle cells in Zucker diabetic fatty rats. Diabetes 2005; 54: 2155–2163
  • Mayhan W G. Effect of diabetes mellitus on response of the basilar artery to activation of ATP-sensitive potassium channels. Brain Res 1994; 636: 35–39
  • Mayhan W G, Faraci F M. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 1993; 265: H152–H157
  • Mayhan W G, Sun H, Mayhan J F, Patel K P. Influence of exercise on dilatation of the basilar artery during diabetes mellitus. J Appl Physiol 2004; 96: 1730–1737
  • McInnis K J. Exercise and obesity. Coron Artery Dis 2000; 11: 111–116
  • McVeigh G E, Brennan G M, Johnston G D, McDermott B J, McGrath L T, Henry W R, Andrews J W, Hayes J R. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992; 35: 771–776
  • Menon R K, Grace A A, Burgoyne W, Fonseca V A, James I M, Dandona P. Muscle blood flow in diabetes mellitus. Evidence of abnormality after exercise. Diabetes Care 1992; 15: 693–695
  • Messina E J, Sun D, Koller A, Wolin M S, Kaley G. Increases in oxygen tension evoke arteriolar constriction by inhibiting endothelial prostaglandin synthesis. Microvasc Res 1994; 48: 151–160
  • Meyer A A, Kundt G, Lenschow U, Schuff-Werner P, Kienast W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol 2006; 48: 1865–1870
  • Meyer A A, Kundt G, Steiner M, Schuff-Werner P, Kienast W. Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: the impact of cardiovascular risk factors. Pediatrics 2006; 117: 1560–1567
  • Morgan D A, Anderson E A, Mark A L. Renal sympathetic nerve activity is increased in obese Zucker rats. Hypertension 1995; 25: 834–838
  • Naik J S, Xiang L, Hester R L. Enhanced role for RhoA-associated kinase in adrenergic-mediated vasoconstriction in gracilis arteries from obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2006; 290: R154–R161
  • Negrao C E, Trombetta I C, Batalha L T, Ribeiro M M, Rondon M UPB, Tinucci T, Forjaz C LM, Barretto A CP, Halpern A, Villares S MF. Muscle metaboreflex control is diminished in normotensive obese women. Am J Physiol Heart Circ Physiol 2001; 281: H469–H475
  • Nelson M T, Quayle J M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol Cell Physiol 1995; 268: C799–C822
  • Nugteren D H, Christ-Hazelhof E. Chemical and enzymatic conversions of the prostaglandin endoperoxide PGH2. Adv Prostaglandin Thromboxane Res 1980; 6: 129–137
  • Ogita H, Liao J K. Endothelial function and oxidative stress. Endothelium 2004; 11: 123–132
  • Orie N N, Fry C H, Clapp L H. Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism. Cardiovasc Res 2006; 69: 107–115
  • Paterno R, Faraci F M, Heistad D D, Brayden J E. Role of Ca2+-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Stroke 1996; 27: 1603–1608
  • Perticone F, Ceravolo R, Candigliota M, Ventura G, Iacopino S, Sinopoli F, Mattioli P L. Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes 2001; 50: 159–165
  • Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986; 8: 37–44
  • Quayle J M, Nelson M T, Standen N B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 1997; 77: 1165–1232
  • Quilley J, McGiff J C. Renal vascular responsiveness to arachidonic acid in experimental diabetes. Br J Pharmacol 1990; 100: 336–340
  • Raitakari M, Ilvonen T, Ahotupa M, Lehtimaki T, Harmoinen A, Suominen P, Elo J, Hartiala J, Raitakari O T. Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscler Thromb Vasc Biol 2004; 24: 124–128
  • Ray R, Shah A M. NADPH oxidase and endothelial cell function. Clin Sci (Lond) 2005; 109: 217–226
  • Ribeiro M M, Silva A G, Santos N S, Guazzelle I, Matos L NJ, Trombetta I C, Halpern A, Negrao C E, Villares S MF. Diet and exercise training restore blood pressure and vasodilatory responses during physiological maneuvers in obese children. Circulation 2005; 111: 1915–1923
  • Ribeiro M M, Trombetta I C, Batalha L T, Rondon M UPB, Forjaz C LM, Barretto A CP, Villares S MF, Negrao C E. Muscle sympathetic nerve activity and hemodynamic alterations in middle-aged obese women. Braz J Med Biol Res 2001; 34: 475–478
  • Ritter J M, Barrow S E, Blair I A, Dollery C T. Release of prostacyclin in vivo and its role in man. Lancet 1983; 1: 317–319
  • Saito Y, McKay M, Eraslan A, Hester R L. Functional hyperemia in striated muscle is reduced following blockade of ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 1996; 270: H1649–H1654
  • Sandow S L, Tare M, Coleman H A, Hill C E, Parkington H C. Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res 2002; 90: 1108–1113
  • Saussy D L, Jr., Mais D E, Burch R M, Halushka P V. Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes. J Biol Chem 1986; 261: 3025–3029
  • Saussy D L, Jr., Mais D E, Knapp D R, Halushka P V. Thromboxane A2 and prostaglandin endoperoxide receptors in platelets and vascular smooth muscle. Circulation 1985; 72: 1202–1207
  • Schror K, Darius H, Matzky R, Ohlendorf R. The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK 36 374)—equipotent to PGI2 in vitro. Naunyn Schmiedebergs Arch Pharmacol 1981; 316: 252–255
  • Schubert R, Serebryakov V N, Engel H, Hopp H H. Iloprost activates KCa channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. Am J Physiol Cell Physiol 1996; 271: C1203–C1211
  • Schubert R, Serebryakov V N, Mewes H, Hopp H H. Iloprost dilates rat small arteries: role of KATP- and KCa-channel activation by cAMP-dependent protein kinase. Am J Physiol Heart Circ Physiol 1997; 272: H1147–H1156
  • Segal S S. Integration of blood flow control to skeletal muscle: key role of feed arteries. Acta Physiologica Scandinavica 2000; 168: 511–518
  • Segal S S, Duling B R. Propagation of vasodilation in resistance vessels of the hamster: development and review of a working hypothesis. Circ Res 1987; 61: II20–II25
  • Shivalkar B, Dhondt D, Goovaerts I, Van Gaal L, Bartunek J, Van Crombrugge P, Vrints C. Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol 2006; 97: 77–82
  • Siegel G, Carl A, Adler A, Stock G. Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 1989; 2: 213–222
  • Siegel G, Emden J, Wenzel K, Mironneau J, Stock G. Potassium channel activation in vascular smooth muscle. Adv Exp Med Biol 1992; 311: 53–72
  • Smiesko V, Lang D J, Johnson P C. Dilator response of rat mesenteric arcading arterioles to increased blood flow velocity. Am J Physiol Heart Circ Physiol 1989; 257: H1958–H1965
  • Smith W L. Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol 1986; 48: 251–262
  • Smith W L. Prostanoid biosynthesis and mechanisms of action. Am J Physiol Renal Physiol 1992; 263: F181–F191
  • Smith W L, Marnett L J, De Witt D L. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 1991; 49: 153–179
  • Spector A A, Fang X, Snyder G D, Weintraub N L. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 2004; 43: 55–90
  • Steinberg H O, Chaker H, Leaming R, Johnson A, Brechtel G, Baron A D. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601–2610
  • Stepp D W. Impact of obesity and insulin resistance on vasomotor tone: nitric oxide and beyond. Clin Exp Pharmacol Physiol 2006; 33: 407–414
  • Stepp D W, Frisbee J C. Augmented adrenergic vasoconstriction in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 2002; 282: H816–H820
  • Thorneloe K S, Nelson M T. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol 2005; 83: 215–242
  • Touyz R M, Schiffrin E L. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004; 122: 339–352
  • Traupe T, Lang M, Goettsch W, Munter K, Morawietz H, Vetter W, Barton M. Obesity increases prostanoid-mediated vasoconstriction and vascular thromboxane receptor gene expression. J Hypertens 2002; 20: 2239–2245
  • Trombetta I C, Batalha L T, Rondon M UPB, Laterza M C, Kuniyoshi F HS, Gowdak M MG, Barretto A CP, Halpern A, Villares S MF, Negrao C E. Weight loss improves neurovascular and muscle metaboreflex control in obesity. Am J Physiol Heart Circ Physiol 2003; 285: H974–H982
  • Van Guilder G P, Hoetzer G L, Dengel D R, Stauffer B L, De Souza C A. Impaired endothelium-dependent vasodilation in normotensive and normoglycemic obese adult humans. J Cardiovasc Pharmacol 2006; 47: 310–313
  • Vanelli G, Chang H Y, Gatensby A G, Hussain S N. Contribution of potassium channels to active hyperemia of the canine diaphragm. J Appl Physiol 1994; 76: 1098–1105
  • Vanelli G, Hussain S N. Effects of potassium channel blockers on basal vascular tone and reactive hyperemia of canine diaphragm. Am J Physiol Heart Circ Physiol 1994; 266: H43–H51
  • Vanhoutte P M, Mombouli J V. Vascular endothelium: vasoactive mediators. Prog Cardiovasc Dis 1996; 39: 229–238
  • Vesterqvist O, Green K. Development of a GC-MS method for quantitation of 2,3-dinor-6-keto-PGF1α and determination of the urinary excretion rates in healthy humans under normal conditions and following drugs. Prostaglandins 1984; 28: 139–154
  • Vigili d e, Kreutzenberg S, Kiwanuka E, Tiengo A, Avogaro A. Visceral obesity is characterized by impaired nitric oxide-independent vasodilation. Eur Heart J 2003; 24: 1210–1215
  • Vigili d e, Kreutzenberg S, Puato M, Kiwanuka E, Del Prato S, Pauletto P, Pasini L, Tiengo A, Avogaro A. Elevated non-esterified fatty acids impair nitric oxide independent vasodilation, in humans: evidence for a role of inwardly rectifying potassium channels. Atherosclerosis 2003; 169: 147–153
  • Weinstock R S, Dai H, Wadden T A. Diet and exercise in the treatment of obesity: effects of 3 interventions on insulin resistance. Arch Intern Med 1998; 158: 2477–2483
  • Wennmalm A, Fitz Gerald G A. Excretion of prostacyclin and thromboxane A2 metabolites during leg exercise in humans. Am J Physiol Heart Circ Physiol 1988; 255: H15–H18
  • Wigg S J, Tare M, Tonta M A, O'Brien R C, Meredith I T, Parkington H C. Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Am J Physiol Heart Circ Physiol 2001; 281: H232–H240
  • Williams I L, Wheatcroft S B, Shah A M, Kearney M T. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord 2002; 26: 754–764
  • Wilson J R, Kapoor S C. Contribution of prostaglandins to exercise-induced vasodilation in humans. Am J Physiol Heart Circ Physiol 1993; 265: H171–H175
  • Xiang L, Naik J, Hester R L. Exercise-induced increase in skeletal muscle vasodilatory responses in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R987–R991
  • Xiang L, Naik J S, Abram S R, Hester R L. Chronic hyperglycemia impairs functional vasodilation via increasing thromboxane receptor-mediated vasoconstriction. Am J Physiol Heart Circ Physiol 2007; 292: H231–H236
  • Xiang L, Naik J S, Hodnett B L, Hester R L. Altered arachidonic acid metabolism impairs functional vasodilation in metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 2006; 290: R134–R138
  • Yamaki F, Kaga M, Horinouchi T, Tanaka H, Koike K, Shigenobu K, Toro L, Tanaka Y. MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 538–550
  • Young E W, Sparks H V. Prostaglandin E release from dog skeletal muscle during restricted flow exercise. Am J Physiol Heart Circ Physiol 1979; 236: H596–H599
  • Young J L, Pendergast D R, Steinbach J. Oxygen transport and peripheral microcirculation in long-term diabetes. Proc Soc Exp Biol Med 1991; 196: 61–68
  • Yu H I, Sheu W H, Lai C J, Lee W J, Chen Y T. Endothelial dysfunction in type 2 diabetes mellitus subjects with peripheral artery disease. Int J Cardiol 2001; 78: 19–25
  • Zebekakis P E, Nawrot T, Thijs L, Balkestein E J, van der Heijden-Spek J, Van Bortel L M, Struijker-Boudier H A, Safar M E, Staessen J A. Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 2005; 23: 1839–1846
  • Zhang Y, Oltman C L, Lu T, Lee H-C, Dellsperger K C, Van Rollins M. EET homologs potently dilate coronary microvessels and activate BKCa channels. Am J Physiol Heart Circ Physiol 2001; 280: H2430–H2440
  • Zhao X, Dey A, Romanko O P, Stepp D W, Wang M-H, Zhou Y, Jin L, Pollock J S, Webb R C, Imig J D. Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R188–R196
  • Zhou W, Wang X-L, Kaduce T L, Spector A A, Lee H-3. Impaired arachidonic acid-mediated dilation of small mesenteric arteries in Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 2005; 288: H2210–H2218
  • Zimmermann P A, Knot H J, Stevenson A S, Nelson M T. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circ Res 1997; 81: 996–1004
  • Zou A P, Fleming J T, Falck J R, Jacobs E R, Gebremedhin D, Harder D R, Roman R J. 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles. Am J Physiol Regul Integr Comp Physiol 1996; 270: R228–R237
  • Zou M-H, Cohen R, Ullrich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium 2004; 11: 89–97
  • Zou M-H, Shi C, Cohen R A. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H2 receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 2002; 51: 198–203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.