10
Views
1
CrossRef citations to date
0
Altmetric
Original

Obesity, Insulin Resistance and Hepatic Perfusion

&
Pages 339-347 | Received 11 Dec 2006, Accepted 11 Jan 2007, Published online: 10 Jul 2009

REFERENCES

  • Ago T, Kitazono T, Ooboshi H, Iyama T, Han Y H, Takad J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 2004; 109: 227–233
  • Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev 2002; 18: S5–S9, Suppl 2
  • Babior B M. The respiratory burst oxidase. Curr Opin Hematol 1995; 2: 55–60
  • Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2003; 285: E685–E692
  • Bauer M, Bauer I, Sonin N V, Kresge N, Baveja R, Yokoyama Y, Harding D, Zhang J X, Clemens M G. Functional significance of endothelin B receptors in mediating sinusoidal and extrasinusoidal effects of endothelins in the intact rat liver. Hepatology 2000; 31: 937–947
  • Bauer M, Paquette N C, Zhang J X, Bauer I, Pannen B H, Kleeberger S R, Clemens M G. Chronic ethanol consumption increases hepatic sinusoidal contractile response to endothelin-1 in the rat. Hepatology 1995; 22: 1565–1576
  • Bayraktutan U, Draper N, Lang D, Shah A M. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 1998; 38: 256–262
  • Bitar M S, Wahid S, Mustafa S, Al Saleh E, Dhaunsi G S, Al Mulla F. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 2005; 511: 53–64
  • Bloch E H. The in vivo microscopic vascular anatomy and physiology of the liver as determined with the quartz rod method of transillumination. Angiology 1955; 6: 340–349
  • Boden G, Chen X, Ruiz J, White J V, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994; 93: 2438–2446
  • Cardillo C, Nambi S S, Kilcoyne C M, Choucair W K, Katz A, Quon M J, Panza J A. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation 1999; 100: 820–825
  • Casteleijn E, Kuiper J, van Rooij H C, Kamps J A, Koster J F, van Berkel T J. Hormonal control of glycogenolysis in parenchymal liver cells by Kupffer and endothelial liver cells. J Biol Chem 1988; 263: 2699–2703
  • Cleland S J, Petrie J R, Small M, Elliott H L, Connell J M. Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension 2000; 35: 507–511
  • Davi G, Chiarelli F, Santilli F, Pomilio M, Vigneri S, Falco A, Basili S, Ciabattoni G, Patrono C. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation 2003; 107: 3199–3203
  • De Jager J, Kooy A, Lehert P, Bets D, Wulffele M G, Teerlink T, Scheffer P G, Schalkwijk C G, Donker A J, Stehouwer C D. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial. J Intern Med 2005; 257: 100–109
  • De Vriese A S, Verbeuren T J, Van dV, Lameire N H, Vanhoutte P M. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–974
  • Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 1990; 192: 245–261
  • Domigan N M, Charlton T S, Duncan M W, Winterbourn C C, Kettle A J. Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 1995; 270: 16542–16548
  • El Serag H B, Everhart J E. Diabetes increases the risk of acute hepatic failure. Gastroenterology 2002; 122: 1822–1828
  • El Serag H B, Tran T, Everhart J E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004; 126: 460–468
  • Evarts R P, Nakatsukasa H, Marsden E R, Hu Z, Thorgeirsson S S. Expression of transforming growth factor-alpha in regenerating liver and during hepatic differentiation. Mol Carcinog 1992; 5: 25–31
  • Gerich J E. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 1998; 19: 491–503
  • Giugliano D, Marfella R, Coppola L, Verrazzo G, Acampora R, Giunta R, Nappo F, Lucarelli C, D'Onofrio F. Vascular effects of acute hyperglycemia in humans are reversed by l-arginine: evidence for reduced availability of nitric oxide during hyperglycemia. Circulation 1997; 95: 1783–1790
  • Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M. Distribution of heme oxygenase isoforms in rat liver: topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Invest 1998; 101: 604–612
  • Griendling K K, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501
  • Groop L C. Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes Obes Metab 1999; 1: S1–S7, Suppl 1
  • Gujral J S, Hinson J A, Jaeschke H. Chlorotyrosine protein adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo. Comp Hepatol 2004; 3: S1–S48, Suppl 1, doi: 10.1186/1476-5926-2-S1-S48
  • Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 1999; 31: 261–272
  • Hautekeete M L, Geerts A. The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch A Pathol Anat Histol 1997; 430: 195–207
  • Hayden M R, Sowers J R, Tyagi S C. The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovasc Diabetol 2005; 4, 9. doi: 10.1186/1475-2840-4-9
  • Ho J K, Duclos R I, Jr., Hamilton J A. Interactions of acyl carnitines with model membranes: a (13)C-NMR study. J Lipid Res 2002; 43: 1429–1439
  • Huynh N T, Tayek J A. Oral arginine reduces systemic blood pressure in type 2 diabetes: its potential role in nitric oxide generation. J Am Coll Nutr 2002; 21: 422–427
  • Inoguchi T, Li P, Umeda F, Yu H Y, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49: 1939–1945
  • Jiang F, Drummond G, Dusting G. Suppression of oxidative stress in the endothelium and vascular wall. Endothelium 2004; 11: 79–88
  • Jiang Z Y, Lin Y W, Clemont A, Feener E P, Hein K D, Igarashi M, Yamauchi T, White M F, King G L. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999; 104: 447–457
  • Jones S A, O'Donnell V B, Wood J D, Broughton J P, Hughes E J, Jones O T. Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 1996; 271: H1626–H1634
  • Katusic Z S. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?. Am J Physiol Heart Circ Physiol 2001; 281: H981–H986
  • Kershenobich S D, Weissbrod A B. Liver fibrosis and inflammation: a review. Ann Hepatol 2003; 2: 159–163
  • Klebanoff S J. Myeloperoxidase. Proc Assoc Am Physicians 1999; 111: 383–389
  • Kolaczynski J W, Carter R, Soprano K J, Moscicki R, Boden G. Insulin binding and degradation by rat liver Kupffer and endothelial cells. Metabolism 1993; 42: 477–481
  • Lam T K van de WG, Giacca A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab 2003; 284: E281–E290
  • Lam T K, Yoshii H, Haber C A, Bogdanovic E, Lam L, Fantus I G, Giacca A. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 2002; 283: E682–E691
  • Laskin D L. Role of hepatic macrophages in inflammation and tissue injury. Functional Heterogeneity of Liver Tissue: From Cell Lineage Diversity to Sublobular Compartment-specific Pathogenesis, F Vidal-Vanaclocha. RG Landes, Austin, TX 1997; 161–176
  • Lassegue B, Clempus R E. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285: R277–R297
  • Latry P, Bioulac-Sage P, Echinard E, Gin H, Boussarie L, Grimaud J A, Balabaud C. Perisinusoidal fibrosis and basement membrane-like material in the livers of diabetic patients. Hum Pathol 1987; 18: 775–780
  • Lautt W W. Hepatic presinusoidal sphincters affected by altered arterial pressure and flow, venous pressure, and nerve stimulation. Microvasc Res 1978; 15: 309–317
  • Lewis G F. Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol 1997; 8: 146–153
  • Li D, Friedman S L. Hepatic stellate cells: morphology, function and regulation. The Liver: Biology and Pathobiology, I M Arias, J L Boyer, F V Chisari, N Fausto, D Schachter, D A Shafritz. Lippincott Williams & Wilkins, Philadelphia 2001; 455–468
  • Li J M, Mullen A M, Yun S, Wientjes F, Brouns G Y, Thrasher A J, Shah A M. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res 2002; 90: 143–150
  • MacPhee P J, Schmidt E E, Groom A C. Organization and flow in the liver microcirculation. Liver Microcirculation and Hepatobiliary Function., K Messmer, M D Menger. Karger, BaselSwitzerland 1993; 52–73
  • Maher J J, Lozier J S, Scott M K. Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol 1998; 275: G847–G853
  • Marzi I, Oda M. Liver Microcirculation. Clinically Applied Microcirculation Research, J H Barker, G L Anderson, M D Menger. CRC Press, Boca Raton, FL 1995; 249–262
  • McCuskey R S. A dynamic and static study of hepatic arterioles and hepatic sphincters. Am J Anat 1966; 119: 455–477
  • McCuskey R S. Sphincters in the microvascular system. Microvasc Res 1971; 3: 428–433
  • McCuskey R S. Hepatic microcirculation as a major determinant of hepatic function. Tissue Perfusion and Organ Function: Ischemia/Reperfusion Injury, T Kamada, T Shiga, R S McCuskey. Elsevier Science, New York 1996; 193–203
  • McCuskey R S, Ito Y, Robertson G R, McCuskey M K, Perry M, Farrell G C. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology 2004; 40: 386–393
  • Meier D A, Hennes M M, McCune S A, Kissebah A H. Effects of obesity and gender on insulin receptor expression in liver of SHHF/Mcc-FAcp rats. Obes Res 1995; 3: 465–470
  • Michael M D, Ruderman N B. Insulin and other growth factors. The Liver: Biology and Pathobiology, I M Arias, J L Boyer, F V Chisari, N Fausto, D Schachter, D A Shafritz. Lippincott Williams & Wilkins, Philadelphia 2001; 511–523
  • Montagnani M, Chen H, Barr V A, Quon M J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem 2001; 276: 30392–30398
  • Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M A, Beebe D, Oates P J, Hammes H P, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–790
  • Nystrom F H, Quon M J. Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal 1999; 11: 563–574
  • Oda M, Han J Y, Yokomori H. Local regulators of hepatic sinusoidal microcirculation: recent advances. Clin Hemorheol Microcirc 2000; 23: 85–94
  • Pannen B H. New insights into the regulation of hepatic blood flow after ischemia and reperfusion. Anesth Analg 2002; 94: 1448–1457
  • Pieper G M. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 1997; 29: 8–15
  • Pinzani M. Novel insights into the biology and physiology of the Ito cell. Pharmacol Ther 1995; 66: 387–412
  • Rappaport A M. The microcirculatory hepatic unit. Microvasc Res 1973; 6: 212–228
  • Reaven G M. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75: 473–486
  • Rensing H, Bauer I, Zhang J X, Paxian M, Pannen B H, Yokoyama Y, Clemens M G, Bauer M. Endothelin-1 and heme oxygenase-1 as modulators of sinusoidal tone in the stress-exposed rat liver. Hepatology 2002; 36: 1453–1465
  • Saleh J, Sniderman A D, Cianflone K. Regulation of plasma fatty acid metabolism. Clin Chim Acta 1999; 286: 163–180
  • Sato N, Eguchi H, Inoue A, Matsumura T, Kawano S, Kamada T. Hepatic microcirculation in Zucker fatty rats. Adv Exp Med Biol 1986; 200: 477–483
  • Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963; 44: 239–242
  • Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest 1994; 94: 2511–2515
  • Schinner S, Scherbaum W A, Bornstein S R, Barthel A. Molecular mechanisms of insulin resistance. Diabet Med 2005; 22: 674–682
  • Seifalian A M, Piasecki C, Agarwal A, Davidson B R. The effect of graded steatosis on flow in the hepatic parenchymal microcirculation. Transplantation 1999; 68: 780–784
  • Seifter S, Englard S. Energy Metabolism. The Liver: Biology and Pathobiology, I M Arias, J L Boyer, N Fausto, W B Jakoby, D Schachter, D A Shafritz. Raven Press, New York 1994; 323–364
  • Shah V, Haddad F G, Garcia-Cardena G, Frangos J A, Mennone A, Groszmann R J, Sessa W C. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 1997; 100: 2923–2930
  • Shiraishi K, Matsuzaki S, Ishida H, Nakazawa H. Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: participation in disturbed hepatic microcirculation. Alcohol Alcohol 1993; 59–64, Suppl 1A
  • Shiratori Y, Tananka M, Kawase T, Shiina S, Komatsu Y, Omata M. Quantification of sinusoidal cell function in vivo. Semin Liver Dis 1993; 13: 39–49
  • Shulman G I. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171–176
  • Smedsrod B. Non-invasive means to study the functional status of sinusoidal liver endothelial cells. J Gastroenterol Hepatol 1995; 10: S81–S83, Suppl 1
  • Smedsrod B, De Bleser P J, Braet F, Lovisetti P, Vanderkerken K, Wisse E, Geerts A. Cell biology of liver endothelial and Kupffer cells. Gut 1994; 35: 1509–1516
  • Soli A H, Kahn C R, Neville D M, Jr., Roth J. Insulin receptor deficiency in genetic and acquired obesity. J Clin Invest 1975; 56: 769–780
  • Song S, Andrikopoulos S, Filippis C, Thorburn A W, Khan D, Proietto J. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Endocrinol Metab 2001; 281: E275–E282
  • Spolarics Z, Ottlakan A, Lang C H, Spitzer J J. Kupffer cells play a major role in insulin-mediated hepatic glucose uptake in vivo. Biochem Biophys Res Commun 1992; 186: 455–460
  • Sun C K, Zhang X Y, Wheatley A M. Increased NAD(P)H fluorescence with decreased blood flow in the steatotic liver of the obese Zucker rat. Microvasc Res 2003; 66: 15–21
  • Sun C K, Zhang X Y, Zimmermann A, Davis G, Wheatley A M. Effect of ischemia-reperfusion injury on the microcirculation of the steatotic liver of the Zucker rat. Transplantation 2001; 72: 1625–1631
  • Tanuma Y, Ohata M, Ito T. Electron microscopic studies on the sinusoidal cells in the monkey liver. Arch Histol Jpn 1983; 46: 401–426
  • Teramoto K, Bowers J L, Kruskal J B, Clouse M E. Hepatic microcirculatory changes after reperfusion in fatty and normal liver transplantation in the rat. Transplantation 1993; 56: 1076–1082
  • Thimgan M S, Yee H FJ. Quantitation of rat hepatic stellate cell contraction: stellate cells' contribution to sinusoidal resistance. Am J Physiol 1999; 277: G137–G143
  • Tomiya T, Ogata I, Fujiwara K. Transforming growth factor alpha levels in liver and blood correlate better than hepatocyte growth factor with hepatocyte proliferation during liver regeneration. Am J Pathol 1998; 153: 955–961
  • Tooke J. The association between insulin resistance and endotheliopathy. Diabetes Obes Metab 1999; 1: S17–S22, Suppl 1
  • Tsilibary E C. Microvascular basement membranes in diabetes mellitus. J Pathol 2003; 200: 537–546
  • Valensi P, Paries J, Maheo P, Gaudey F, Attali J R. Erythrocyte rheological changes in obese patients: influence of hyperinsulinism. Int J Obes Relat Metab Disord 1996; 20: 814–819
  • Vicent D, Ilany J, Kondo T, Naruse K, Fisher S J, Kisanuki Y Y, Bursell S, Yanagisawa M, King G L, Kahn C R. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 2003; 111: 1373–1380
  • Wake K, Decker K, Kirn A, Knook D L, McCuskey R S, Bouwens L, Wisse E. Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol 1989; 118: 173–229
  • Wells R G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 2005; 39: S158–S161
  • Wiesenthal S R, Sandhu H, McCall R H, Tchipashvili V, Yoshii H, Polonsky K, Shi Z Q, Lewis G F, Mari A, Giacca A. Free fatty acids impair hepatic insulin extraction in vivo. Diabetes 1999; 48: 766–774
  • Winwood P J, Arthur M J. Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 1993; 13: 50–59
  • Wisse E, De Zanger R B, Charels K, Van Der Smissen P, McCuskey R S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985; 5: 683–692
  • Zeng G, Nystrom F H, Ravichandran L V, Cong L N, Kirby M, Mostowski H, Quon M J. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101: 1539–1545
  • Zhang C, Yang J, Jennings L K. Leukocyte-derived myeloperoxidase amplifies high-glucose-induced endothelial dysfunction through interaction with high-glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species. Diabetes 2004; 53: 2950–2959

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.