1
Views
1
CrossRef citations to date
0
Altmetric
Original

Remote Microvascular Preconditioning Alters Specific Vasoactive Responses

&
Pages 739-751 | Received 12 May 2006, Accepted 19 Feb 2007, Published online: 10 Jul 2009

REFERENCES

  • Aizawa T, Wei H, Miano J M, Abe J, Berk B C, Yan C. Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 2003; 93: 406–413
  • Bartlett I S, Crane G J, Neild T O, Segal S S. Electrophysiological basis of arteriolar vasomotion in vivo. J Vasc Res 2000; 37: 568–575
  • Berg B R, Sarelius I H. Functional capillary organization in striated muscle. Am J Physiol 1995; 268: H1215–H1222
  • Bolli R. The late phase of preconditioning. Circ Res 2000; 87: 972–983
  • Brayden J E. Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 2002; 29: 312–316
  • Brayden J E, Quayle J M, Standen N B, Nelson M T. Role of potassium channels in the vascular response to endogenous and pharmacological vasodilators. Blood Vessels 1991; 28: 147–153
  • Carden D L, Granger D N. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190: 255–266
  • Chen Y, Rivers R J. Nonvasomotor influence of sodium nitroprusside on arteriolar remote response to methacholine. J Vasc Res 2001; 38: 219–227
  • Chen Y, Rivers R J. Arteriolar occlusion causes independent cellular responses in endothelium and smooth muscle. Microcirculation 2002; 9: 353–362
  • Cokelet G R. Experimental determination of the average hematocrit of blood flowing in a vessel. Microvasc Res 1974; 7: 382–384
  • Cutrn J C, Perrelli M G, Cavalieri B, Peralta C, Rosell C J, Poli G. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med 2002; 33: 1200–1208
  • Dayton C, Yamaguchi T, Warren A, Korthuis R J. Ischemic preconditioning prevents postischemic arteriolar, capillary, and postcapillary venular dysfunction: signaling pathways mediating the adaptive metamorphosis to a protected phenotype in preconditioned endothelium. Microcirculation 2002; 9: 73–89
  • DeFily D V, Chilian W M. Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury. Am J Physiol 1993; 265: H700–H706
  • Doble B W, Dang X, Ping P, Fandrich R R, Nickel B E, Jin Y, Cattini P A, Kardami E. Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci 2004; 117: 507–514
  • Doble B W, Ping P, Kardami E. The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 2000; 86: 293–301
  • Dora K A, Xia J, Duling B R. Endothelial cell signaling during conducted vasomotor responses. Am J Physiol Heart Circ Physiol 2003; 285: H119–H126
  • Duling B R, Sarelius I H, Jackson W F. A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow. Int J Microcirc Clin Exp 1982; 1: 409–424
  • Dunkerley H A, Tilley D G, Palmer D, Liu H, Jimmo S L, Maurice D H. Reduced phosphodiesterase 3 activity and phosphodiesterase 3A level in synthetic vascular smooth muscle cells: implications for use of phosphodiesterase 3 inhibitors in cardiovascular tissues. Mol Pharmacol 2002; 61: 1033–1040
  • Emerson G G, Neild T O, Segal S S. Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. Am J Physiol Heart Circ Physiol 2002; 283: H102–H109
  • Essayan D M. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 2001; 108: 671–680
  • Feng J, Bianchi C, Li J, Sellke F W. Bradykinin preconditioning preserves coronary microvascular reactivity during cardioplegia-reperfusion. Ann Thorac Surg 2005; 79: 911–916
  • Fox R J, Frame M D. Arteriolar flow recruitment with vitronectin receptor stimulation linked to remote wall shear stress. Microvasc Res 2002; 64: 414–424
  • Fox R J, Frame M D. Regulation of flow and wall shear stress in arteriolar networks of the hamster cheek pouch. J Appl Physiol 2002; 92: 2080–2088
  • Frame M D. Conducted signals within arteriolar networks initiated by bioactive amino acids. Am J Physiol 1999; 276: H1012–H1021
  • Frame M D. Increased flow precedes remote arteriolar dilations for some microapplied agonists. Am J Physiol Heart Circ Physiol 2000; 278: H1186–H1195
  • Frame M D, Fox R J, Kim D, Mohan A, Berk B C, Yan C. Diminished arteriolar responses in nitrate tolerance involve ROS and angiotensin II. Am J Physiol Heart Circ Physiol 2002; 282: H2377–H2385
  • Frame M D, Sarelius I H. L-Arginine-induced conducted signals alter upstream arteriolar responsivity to L-arginine. Circ Res 1995; 77: 695–701
  • Goodman & Gilman's The Pharmacological Basis of Therapeutics, JD Hardman, LE Limbird, PB Molinoff, RW Ruddon, AG Gilman. McGraw-Hill, New York 1996
  • Griffith T M, Chaytor A T, Edwards D H. The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res 2004; 49: 551–564
  • Griffith T M, Chaytor A T, Taylor H J, Giddings B D, Edwards D H. cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci USA 2002; 99: 6392–6397
  • Jackson W F. Arteriolar tone is determined by activity of ATP-sensitive potassium channels. Am J Physiol 1993; 265: H1797–H1803
  • Jain S K, Schuessler R B, Saffitz J E. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 2003; 92: 1138–1144
  • Kim D, Rybalkin S D, Pi X, Wang Y, Zhang C, Munzel T, Beavo J A, Berk B C, Yan C. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 2001; 104: 2338–2343
  • Krenz M, Oldenburg O, Wimpee H, Cohen M V, Garlid K D, Critz S D, Downey J M, Benoit J N. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 2002; 97: 365–373
  • Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res 2002; 55: 466–473
  • Lebuffe G, Schumacker P T, Shao Z H, Anderson T, Iwase H, Vanden Hoek T L. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol 2003; 284: H299–H308
  • Lebuffe G R, Schumacker P T, Shao Z H, Anderson T, Vanden Hoek T L. Reactive oxygen and nitrogen species trigger early preconditioning: Relationship to the KATP channel. Intensive Care Med 2002; 28: S78
  • Legtenberg R J, Rongen G A, Houston R J, Oeseburg B, Smits P. The role of myocardial KATP-channel blockade in the protective effects of glibenclamide against ischaemia in the rat heart. Pharmacol Toxicol 2002; 91: 51–56
  • Lin J H, Yang J, Liu S, Takano T, Wang X, Gao Q, Willecke K, Nedergaard M. Connexin mediates gap junction-independent resistance to cellular injury. J Neurosci 2003; 23: 430–441
  • Looft-Wilson R C, Haug S J, Neufer P D, Segal S S. Independence of connexin expression and vasomotor conduction from sympathetic innervation in hamster feed arteries. Microcirculation 2004; 11: 397–408
  • Mabanta L, Valane P, Borne J, Frame M D. Initiation of remote microvascular preconditioning requires K(ATP) channel activity. Am J Physiol Heart Circ Physiol 2006; 290: H264–H271
  • Matsuda N, Morgan K G, Sellke F W. Preconditioning improves cardioplegia-related coronary microvascular smooth muscle hypercontractility: role of KATP channels. J Thorac Cardiovasc Surg 1999; 118: 438–445
  • Maurice D H, Palmer D, Tilley D G, Dunkerley H A, Netherton S J, Raymond D R, Elbatarny H S, Jimmo S L. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 2003; 64: 533–546
  • Murphy M E, Brayden J E. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995; 486(Pt 1)47–58
  • Murrant C L, Duza T, Kim M B, Cohen K D, Sarelius I H. Arteriolar dilations induced by contraction of hamster cremaster muscle are dependent on changes in endothelial cell calcium. Acta Physiol Scand 2004; 180: 231–238
  • Polson J B, Strada S J. Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annu Rev Pharmacol Toxicol 1996; 36: 403–427
  • Post H, Heusch G. Ischemic preconditioning. Experimental facts and clinical perspective. Minerva Cardioangiol 2002; 50: 569–605
  • Rivers R J, Frame M D. Network vascular communication initiated by increases in tissue adenosine. J Vasc Res 1999; 36: 193–200
  • Rivers R J, Thengchaisri N. Remote arteriolar dilations caused by methacholine: a role for CGRP sensory nerves. Am J Physiol Heart Circ Physiol 2005; 289: H608–H613
  • Sarelius I H, McKinlay S M. Statistical constraints on microvascular measurements using fluorescent erythrocytes. Am J Physiol 1985; 248: H507–H586
  • Segal S S, Duling B R. Flow control among microvessels coordinated by intercellular conduction. Science 1986; 234: 868–870
  • Snedecor G W, Cochran W G. Statistical Methods. The Iowa State University Press, Ames, IA 1974
  • Sweeney T E, Sarelius I H. Arteriolar control of capillary cell flow in striated muscle. Circ Res 1989; 64: 112–120
  • Tilley D G, Maurice D H. Vascular smooth muscle cell phosphodiesterase (PDE) 3 and PDE4 activities and levels are regulated by cyclic AMP in vivo. Mol Pharmacol 2002; 62: 497–506
  • Vondriska T M, Klein J B, Ping P. Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 2001; 280: H1434–H1441
  • Wang W Z, Stepheson L L, Anderson G L, Miller F N, Khiabani K T, Zamboni W A. Role of PKC in the late phase of microvascular protection induced by preconditioning. J Surg Res 2002; 106: 166–172
  • Yamazaki J, Kitamura K. Cell-to-cell communication via nitric oxide modulation of oscillatory Cl(-) currents in rat intact cerebral arterioles. J Physiol 2001; 536: 67–78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.