7
Views
0
CrossRef citations to date
0
Altmetric
Articles

Novel Technique for Estimating Cerebrovascular Permeability Demonstrates Capsazepine Protection Following Ischemia-Reperfusion

, , , &
Pages 767-778 | Received 02 Dec 2006, Accepted 07 Mar 2007, Published online: 10 Jul 2009

REFERENCES

  • Allt G, Lawrenson J G. Is the pial microvessel a good model for blood-brain barrier studies?. Brain Res Rev 1997; 24: 67–76
  • Banks W A, Broadwell R D. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments. J Neurochem 1994; 62: 2404–2419
  • Berger C, Schmid P C, Schabitz W R, Wolf M, Schwab S, Schmid H H. Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia?. J Neurochem 2004; 88: 1159–1167
  • Butt A M, Jones H C, Abbott N J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990; 429: 47–62
  • Cernak I, Vink R, Natale J., Stoica B, Lea P M, Movsesyan V, Ahmed F, Knoblach S M, Fricke S T, Faden A I. The “dark side” of endocannabinoids: a neurotoxic role for anandamide. J Cereb Blood Flow Metab 2004; 24: 564–57
  • Dietrich W D, Alonso O, Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke 1993; 24: 111–116
  • Ding-Zhou L, Margaill I, Palmier B, Pruneau D, Plotkine M, Marchand-Verrecchia C. LF16-0687 Ms, a bradykinin B2 receptor antagonist, reduces ischemic brain injury in a murine model of transient focal cerebral ischemia. Br J Pharmacol 2003; 139: 1539–1547
  • Duvernoy H M, Delon S, Vannson J L. Cortical blood vessels of the human brain. Brain Res Bull 1981; 7: 519–579
  • Easton A S, Fraser P A. Variable restriction of albumin diffusion across inflamed cerebral microvessels. J Physiol 1994; 475: 147–157
  • Easton A S, Sarker M H, Fraser P A. Two components of blood-brain barrier disruption in the rat. J Physiol 1997; 503: 613–623
  • Fraser P A, Dallas A D. Permeability of disrupted cerebral microvessels in the frog. J Physiol 1993; 461: 619–632
  • Han F, Shirasaki Y, Fukunaga K. Microsphereembolism-induced nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 2006; 99: 97–106
  • Harris N G, Gauden V, Fraser P A, Williams S R, Parker G J. MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia. Magn Reson Imaging 2002; 20: 221–230
  • Hu D E, Easton A S, Fraser P A. TRPV1 activation results in disruption of the blood-brain barrier in the rat. Br J Pharmacol 2005; 146: 576–584
  • Ishikawa M, Vowinkel T, Stokes K Y, Arumugam T V, Yilmaz G, Nanda A, Granger D N. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 2005; 111: 1690–1696
  • Johansson C J. Pharmacokinetic rationale for chemotherapeutic drugs combined with intra-arterial degradable starch microspheres (Spherex). Clin Pharmacokinet 1996; 31: 231–240
  • Kleinfeld D, Mitra P P, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 1998; 95: 15741–15746
  • Laccourreye O, Laurent A, Polivka M, Wassef M, Domas L, Brasnu D, Merland J J. Biodegradable starch microspheres for cerebral arterial embolization. Invest Radiol 1993; 28: 150–154
  • Makita T, Ichimal H, Kagabu S, Manba K, Naito I, Lindblom R, Hatsuoka M, Okawa T. Scanning and transmission electron microscopy of biodegradable microspheres (DSM) in blood vessels. Cell Biol Int Rep 1989; 13: 427–436
  • Nimmo A J, Cernak I, Heath D L, Hu X, Bennett C J, Vink R. Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides 2004; 38: 40–47
  • Pegorini S, Braida D, Verzoni C, Guerini-Rocco C, Consalez G G, Croci L, Sala M. Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol 2005; 144: 727–735
  • Penn M S, Koelle M R, Schwartz S M, Chisolm G M. Visualization and quantification of transmural concentration profiles of macromolecules across the arterial wall. Circ Res 1990; 67: 11–22
  • Petito C K. Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 1979; 38: 222–234
  • Pluta R, Lossinsky A S, Wisniewski H M, Mossakowski M J. Early blood-brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest. Brain Res 1994; 633: 41–52
  • Poduslo J F, Curran G L, Berg C T. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci U S A 1994; 91: 5705–5709
  • Preston E, Foster D O. Evidence for pore-like opening of the blood-brain barrier following forebrain ischemia in rats. Brain Res 1997; 761: 4–10
  • Preston E, Sutherland G, Finsten A. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat. Neurosci Lett 1993; 149: 75–78
  • Rapoport S I, Ohno K, Fredericks W R, Pettigrew K D. Regional cerebrovascular permeability to P14PC-sucrose after osmotic opening of the blood-brain barrier. Brain Res 1978; 150: 653–657
  • Sampaolo S, Nakagawa Y, Iannotti F, Cervos-Navarro J, Bonavita V. Blood-brain barrier permeability to micromolecules and edema formation in the early phase of incomplete continuous ischemia. Acta Neuropathol (Berl) 1991; 82: 107–111
  • Sarker M H, Easton A S, Fraser P A. Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J Physiol 1998; 507: 909–918
  • Sarker M H, Hu D E, Fraser P A. Acute effects of bradykinin on cerebral microvascular permeability in the anaesthetized rat. J Physiol 2000; 528: 177–187
  • Shimamura N, Matchett G, Solaroglu I, Tsubokawa T, Ohkuma H, Zhang J. Inhibition of integrin alphavbeta3 reduces blood-brain barrier breakdown in focal ischemia in rats. J Neurosci Res 2006; 84: 1837–184
  • Smart D, Gunthorpe M J, Jerman J C, Nasir S, Gray J, Muir A I, Chambers J K, Randall A D, Davis J B. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 2000; 129: 227–230
  • Snedecor G W, Cochran W G. Statistical Methods. 6th edition. Iowa State University Press, Ames (IA) 1967
  • Stamatovic S M, Shakui P, Keep R F, Moore B B, Kunkel S L, Van Rooijen N, Andjelkovic A V. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 2005; 25: 593–606
  • Stewart P A, Farrell C R, Farrell C L, Hayakawa E. Horseradish peroxidase retention and washout in blood-brain barrier lesions. J Neurosci Methods 1992; 41: 75–84
  • Stumm R, Culmsee C, Schafer M K, Krieglstein J, Weihe E. Adaptive plasticity in tachykinin and tachykinin receptor expression after focal cerebral ischemia is differentially linked to gabaergic and glutamatergic cerebrocortical circuits and cerebrovenular endothelium. J Neurosci 2001; 21: 798–811
  • Vyklicky L, Knotkova-Urbancova H, Vitaskova Z, Vlachova V, Kress M, Reeh P W. Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J Neurophysiol 1998; 79: 670–676
  • Yang G Y, Betz A L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 1994; 25: 1658–1664
  • Yoshizumi H, Fujibayashi Y, Kikuchi H. A new approach to the integrity of dual blood-brain barrier functions of global ischemic rats. Barrier and carrier functions. Stroke 1993; 24: 279–285
  • Zuckerman S L, Mirro R, Armstead W M, Shibata M, Leffler C W. Indomethacin reduces ischemia-induced alteration of blood-brain barrier transport in piglets. Am J Physiol 1994; 266: H2198–203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.