39
Views
5
CrossRef citations to date
0
Altmetric
Original

Blood Coagulation, Inflammation, and Malaria

, &
Pages 81-107 | Received 22 Feb 2007, Accepted 15 May 2007, Published online: 10 Jul 2009

REFERENCES

  • Miller L H, Baruch D I, Marsh K, Doumbo O K. The pathogenic basis of malaria. Nature 2002; 415: 673–679
  • Newton C R, Taylor T E, Whitten R O. Pathophysiology of fatal falciparum malaria in African children. Am J Trop Med Hyg 1998; 58: 673–683
  • Weatherall D J, Miller L H, Baruch D I, Marsh K, Doumbo O K, Casals-Pascual C, Roberts D J. Malaria and the red cell. Hematology Am Soc Hematol Educ Progr 2002; 35–57
  • White N J, Breman J G. Malaria and babesiosis: diseases caused by red blood cell parasites. Harrison's Principles of Internal Medicine. Vol. 1., D L Kasper, E Brawnwald, A S Fauci, S L Hauser, D L Longo, D L Jameson. McGraw Hill, New York 2005; 1218–1233
  • Clark I A, Cowden W B. The pathophysiology of falciparum malaria. Pharmacol Ther 2003; 99: 221–260
  • Ribeiro J M, Francischetti I M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 2003; 48: 73–88
  • Francischetti I M, Valenzuela J G, Pham V M, Garfield M K, Ribeiro J M. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J Exp Biol 2002; 205: 2429–2451
  • Krettli A U, Miller L H. Malaria: a sporozoite runs through it. Curr Biol 2001; 11: R409–R412
  • Baldacci P, Menard R. The elusive malaria sporozoite in the mammalian host. Mol Microbiol 2004; 54: 298–306
  • Garcia J E, Puentes A, Patarroyo M E. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 2006; 19: 686–707
  • Bozdech Z, Llinas M, Pulliam B L, Wong E D, Zhu J, DeRisi J L. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003; 1: 86–100
  • Paul R E, Diallo M, Brey P T. Mosquitoes and transmission of malaria parasites—not just vectors. Malar J 2004; 3: 39–54
  • Maitland K. Severe malaria: lessons learned from the management of critical illness in children. Trends Parasitol 2006; 22: 457–462
  • Grobusch M P, Kremsner P G. Uncomplicated malaria. Curr Top Microbiol Immunol 2005; 295: 83–104
  • Anstey N M, Jacups S P, Cain T, Pearson T, Ziesing P J, Fisher D A, Currie B J, Marks P J, Maguire G P. Pulmonary manifestations of uncomplicated falciparum and vivax malaria: cough, small airways obstruction, impaired gas transfer, and increased pulmonary phagocytic activity. J Infect Dis 2002; 185: 1326–1334
  • Turner G. Cerebral malaria. Brain Pathol 1997; 7: 569–582
  • Idro R, Jenkins N E, Newton C R. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 2005; 4: 827–840
  • Mackintosh C L, Beeson J G, Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol 2004; 20: 597–603
  • Phillips R E, Looareesuwan S, Warrell D A, Lee S H, Karbwang J, Warrell M J, White N J, Swasdichai C, Weatherall D J. The importance of anaemia in cerebral and uncomplicated falciparum malaria: role of complications, dyserythropoiesis, and iron sequestration. Q J Med 1986; 58: 305–323
  • Warrell D A. Cerebral malaria: clinical features, pathophysiology, and treatment. Ann Trop Med Parasitol 1997; 91: 875–884
  • Molyneux M E, Taylor T E, Wirima J J, Borgstein A. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med 1989; 71: 441–459
  • Klein Klouwenberg P M, Oyakhirome S, Schwarz N G, Glaser B, Issifou S, Kiessling G, Klopfer A, Kremsner P G, Langin M, Lassmann B, Necek M, Potschke M, Ritz A, Grobusch M P. Malaria and asymptomatic parasitaemia in Gabonese infants under the age of 3 months. Acta Trop 2005; 95: 81–85
  • Greenwood B M, Bojang K, Whitty C J, Targett G A. Malaria. Lancet 2005; 365: 1487–1498
  • Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, Newton C, Winstanley P, Warn P, Peshu N, et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332: 1399–1404
  • Clark I A, Rockett K A. The cytokine theory of human cerebral malaria. Parasitol Today 1994; 10: 410–412
  • Berendt A R, Tumer G D, Newbold C I. Cerebral malaria: the sequestration hypothesis. Parasitol Today 1994; 10: 412–414
  • MacPherson G G, Warrell M J, White N J, Looareesuwan S, Warrell D A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119: 385–401
  • Pongponratn E, Riganti M, Punpoowong B, Aikawa M. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg 1991; 44: 168–175
  • Pongponratn E, Turner G D, Day N P, Phu N H, Simpson J A, Stepniewska K, Mai N T, Viriyavejakul P, Looareesuwan S, Hien T T, Ferguson D J, White N J. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003; 69: 345–359
  • Silamut K, Phu N H, Whitty C, Turner G D, Louwrier K, Mai N T, Simpson J A, Hien T T, White N J. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999; 155: 395–410
  • Taylor T E, Fu W J, Carr R A, Whitten R O, Mueller J S, Fosiko N G, Lewallen S, Liomba N G, Molyneux M E. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004; 10: 143–145
  • Seydel K B, Milner D A, Jr, Kamiza S B, Molyneux M E, Taylor T E. The distribution and intensity of parasite sequestration in comatose Malawian children. J Infect Dis 2006; 194: 208–205
  • Desakorn V, Dondorp A M, Silamut K, Pongtavornpinyo W, Sahassananda D, Chotivanich K, Pitisuttithum P, Smithyman A M, Day N P, White N J. Stage-dependent production and release of histidine-rich protein 2 by Plasmodium falciparum. Trans R Soc Trop Med Hyg 2005; 99: 517–524
  • Dondorp A M, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton P N, Pitisuttithum P, Smithyman A M, White N J, Day N P. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2005; 2: 788–797
  • Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366: 717–725
  • Sina B. Focus on Plasmodium vivax. Trends Parasitol 2002; 18: 287–289
  • Luxemburger C, Ricci F, Nosten F, Raimond D, Bathet S, White N J. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans R Soc Trop Med Hyg 1997; 91: 256–262
  • Agarwal A, Guindo A, Cissoko Y, Taylor J G, Coulibaly D, Kone A, Kayentao K, Djimde A, Plowe C V, Doumbo O, Wellems T E, Diallo D. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood 2000; 96: 2358–2363
  • Fairhurst R M, Wellems T E. Modulation of malaria virulence by determinants of Plasmodium falciparum erythrocyte membrane protein-1 display. Curr Opin Hematol 2006; 13: 124–130
  • Williams T N. Human red blood cell polymorphisms and malaria. Curr Opin Microbiol 2006; 9: 388–394
  • Su X Z, Heatwole V M, Wertheimer S P, Guinet F, Herrfeldt J A, Peterson D S, Ravetch J A, Wellems T E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995; 82: 89–100
  • Baruch D I, Pasloske B L, Singh H B, Bi X, Ma X C, Feldman M, Taraschi T F, Howard R J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 1995; 82: 77–87
  • Smith J D, Chitnis C E, Craig A G, Roberts D J, Hudson-Taylor D E, Peterson D S, Pinches R, Newbold C I, Miller L H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 1995; 82: 101–110
  • Barnwell J W, Asch A S, Nachman R L, Yamaya M, Aikawa M, Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest 1989; 84: 765–772
  • Oquendo P, Hundt E, Lawler J, Seed B. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 1989; 58: 95–101
  • Ockenhouse C F, Tandon N N, Magowan C, Jamieson G A, Chulay J D. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 1989; 243: 1469–1471
  • Baruch D I, Gormely J A, Ma C, Howard R J, Pasloske B L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1996; 93: 3497–3502
  • Berendt A R, Simmons D L, Tansey J, Newbold C I, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341: 57–59
  • Roberts D D, Sherwood J A, Spitalnik S L, Panton L J, Howard R J, Dixit V M, Frazier W A, Miller L H, Ginsburg V. Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature 1985; 318: 64–66
  • Ockenhouse C F, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan K E, Thway Y, Win K, Aikawa M, Lobb R R. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 1992; 176: 1183–1189
  • Treutiger C J, Heddini A, Fernandez V, Muller W A, Wahlgren M. PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Nat Med 1997; 3: 1405–1408
  • Rogerson S J, Chaiyaroj S C, Ng K, Reeder J C, Brown G V. Chondroitin sulfate A is a cell surface receptor forPlasmodium falciparum-infected erythrocytes. J Exp Med 1995; 182: 15–20
  • Fried M, Duffy P E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 1996; 272: 1502–1504
  • Robert C, Pouvelle B, Meyer P, Muanza K, Fujioka H, Aikawa M, Scherf A, Gysin J. Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. Res Immunol 1995; 146: 383–393
  • Rogerson S J, Novakovic S, Cooke B M, Brown G V. Plasmodium falciparum-infected erythrocytes adhere to the proteoglycan thrombomodulin in static and flow-based systems. Exp Parasitol 1997; 86: 8–18
  • Kwiatkowski D, Hill A V, Sambou I, Twumasi P, Castracane J, Manogue K R, Cerami A, Brewster D R, Greenwood B M. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 1990; 336: 1201–1204
  • Grau G E, Taylor T E, Molyneux M E, Wirima J J, Vassalli P, Hommel M, Lambert P H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med 1989; 320: 1586–1591
  • Kwiatkowski D, Molyneux M E, Stephens S, Curtis N, Klein N, Pointaire P, Smit M, Allan R, Brewster D R, Grau G E, et al. Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med 1993; 86: 91–98
  • Friedland J S, Ho M, Remick D G, Bunnag D, White N J, Griffin G E. Interleukin-8 and Plasmodium falciparum malaria in Thailand. Trans R Soc Trop Med Hyg 1993; 87: 54–55
  • Mshana R N, Boulandi J, Mshana N M, Mayombo J, Mendome G. Cytokines in the pathogenesis of malaria: levels of IL-I beta, IL-4, IL-6, TNF-alpha, and IFN-gamma in plasma of healthy individuals and malaria patients in a holoendemic area. J Clin Lab Immunol 1991; 34: 131–139
  • Lyke K E, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe C V, Doumbo O K, Sztein M B. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72: 5630–5637
  • Harpaz R, Edelman R, Wasserman S S, Levine M M, Davis J R, Sztein M B. Serum cytokine profiles in experimental human malaria. Relationship to protection and disease course after challenge. J Clin Invest 1992; 90: 515–523
  • Brown H, Turner G, Rogerson S, Tembo M, Mwenechanya J, Molyneux M, Taylor T. Cytokine expression in the brain in human cerebral malaria. J Infect Dis 1999; 180: 1742–1746
  • Day N P, Hien T T, Schollaardt T, Loc P P, Chuong L V, Chau T T, Mai N T, Phu N H, Sinh D X, White N J, Ho M. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis 1999; 180: 1288–1297
  • Ho M, Schollaardt T, Snape S, Looareesuwan S, Suntharasamai P, White N J. Endogenous interleukin-10 modulates proinflammatory response in Plasmodium falciparum malaria. J Infect Dis 1998; 178: 520–525
  • Porta J, Carota A, Pizzolato G P, Wildi E, Widmer M C, Margairaz C, Grau G E. Immunopathological changes in human cerebral malaria. Clin Neuropathol 1993; 12: 142–146
  • Udomsangpetch R, Chivapat S, Viriyavejakul P, Riganti M, Wilairatana P, Pongponratin E, Looareesuwan S. Involvement of cytokines in the histopathology of cerebral malaria. Am J Trop Med Hyg 1997; 57: 501–506
  • Kern P, Hemmer C J, Van Damme J, Gruss H J, Dietrich M. Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med 1989; 87: 139–143
  • Urquhart A D. Putative pathophysiological interactions of cytokines and phagocytic cells in severe human falciparum malaria. Clin Infect Dis 1994; 19: 117–131
  • Wenisch C, Linnau K F, Looaresuwan S, Rumpold H. Plasma levels of the interleukin-6 cytokine family in persons with severe Plasmodium falciparum malaria. J Infect Dis 1999; 179: 747–750
  • Shaffer N, Grau G E, Hedberg K, Davachi F, Lyamba B, Hightower A W, Breman J G, Phuc N D. Tumor necrosis factor and severe malaria. J Infect Dis 1991; 163: 96–101
  • Ho M, White N J. Molecular mechanisms of cytoadherence in malaria. Am J Physiol 1999; 276: C1231–C1242
  • Ringwald P, Peyron F, Lepers J P, Rabarison P, Rakotomalala C, Razanamparany M, Rabodonirina M, Roux J, Le Bras J. Parasite virulence factors during falciparum malaria: rosetting, cytoadherence, and modulation of cytoadherence by cytokines. Infect Immunol 1993; 61: 5198–5204
  • Ho M, Singh B, Looareesuwan S, Davis T M, Bunnag D, White N J. Clinical correlates of in vitro Plasmodium falciparum cytoadherence. Infect Immunol 1991; 59: 873–878
  • Ockenhouse C F, Ho M, Tandon N N, Van Seventer G A, Shaw S, White N J, Jamieson G A, Chulay J D, Webster H K. Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis 1991; 164: 163–169
  • Turner G D, Ly V C, Nguyen T H, Tran T H, Nguyen H P, Bethell D, Wyllie S, Louwrier K, Fox S B, Gatter K C, Day N P, Tran T H, White N J, Berendt A R. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol 1998; 152: 1477–1487
  • Turner G D, Morrison H, Jones M, Davis T M, Looareesuwan S, Buley I D, Gatter K C, Newbold C I, Pukritayakamee S, Nagachinta B, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 1994; 145: 1057–1069
  • Garcia F, Cebrian M, Dgedge M, Casademont J, Bedini J L, Neves O, Filella X, Cinta Cid M, Corachan M, Grau J M. Endothelial cell activation in muscle biopsy samples is related to clinical severity in human cerebral malaria. J Infect Dis 1999; 179: 475–483
  • Hemmer C J, Bierhaus A, von Riedesel J, Gabat S, Liliensiek B, Pitronik P, Lin J, Grauer A, Amiral J, Ziegler R, et al. Elevated thrombomodulin plasma levels as a result of endothelial involvement in Plasmodium falciparum malaria. Thromb Haemost 1994; 72: 457–464
  • Clark I A, Awburn M M, Whitten R O, Harper C G, Liomba N G, Molyneux M E, Taylor T E. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2003; 2: 6–23
  • Fauser S, Deininger M H, Kremsner P G, Magdolen V, Luther T, Meyermann R, Schluesener H J. Lesion associated expression of urokinase-type plasminogen activator receptor (uPAR, CD87) in human cerebral malaria. J Neuroimmunol 2000; 111: 234–240
  • Francischetti I M, Seydel K B, Monteiro R Q, Whitten R O, Erexson C R, Noronha A L, Ostera G R, Kamiza S B, Molyneux M E, Ward J M, Taylor T E. Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes. J Thromb Haemost 2007; 5: 155–165
  • Hviid L, Theander T G, Elhassan I M, Jensen J B. Increased plasma levels of soluble ICAM-1 and ELAM-1 (E-selectin) during acute Plasmodium falciparum malaria. Immunol Lett 1993; 36: 51–58
  • Boehme M W, Werle E, Kommerell B, Raeth U. Serum levels of adhesion molecules and thrombomodulin as indicators of vascular injury in severe Plasmodium falciparum malaria. Clin Invest 1994; 72: 598–603
  • Hollestelle M J, Donkor C, Mantey E A, Chakravorty S J, Craig A, Akoto A O, O'Donnell J, van Mourik J A, Bunn J. von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br J Haematol 2006; 133: 562–569
  • Horstmann R D, Dietrich M. Haemostatic alterations in malaria correlate to parasitaemia. Blut 1985; 51: 329–335
  • Horstmann R D, Dietrich M, Bienzle U, Rasche H. Malaria-induced thrombocytopenia. Blut 1981; 42: 157–164
  • Gerardin P, Rogier C, Ka A S, Jouvencel P, Brousse V, Imbert P. Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg 2002; 66: 686–691
  • Ladhani S, Lowe B, Cole A O, Kowuondo K, Newton C R. Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome. Br J Haematol 2002; 119: 839–847
  • Jadhav U M, Patkar V S, Kadam N N. Thrombocytopenia in malaria—correlation with type and severity of malaria. J Assoc Phys India 2004; 52: 615–618
  • Scott C S, Van Zyl D, Ho E, Ruivo L, Mendelow B, Coetzer T L. Thrombocytopenia in patients with malaria: automated analysis of optical platelet counts and platelet clumps with the Cell Dyn CD4000 analyser. Clin Lab Haematol 2002; 24: 295–302
  • Dennis L H, Eichelberger J W, Inman M M, Conrad M E. Depletion of coagulation factors in drug-resistant Plasmodium falciparum malaria. Blood 1967; 29: 713–721
  • O'Leary D S, Barr C F, Wellde B T, Conrad M E. Experimental infection with Plasmodium falciparum in Aotus monkeys. 3. The development of disseminated intravascular coagulation. Am J Trop Med Hyg 1972; 21: 282–287
  • Pukrittayakamee S, White N J, Clemens R, Chittamas S, Karges H E, Desakorn V, Looareesuwan S, Bunnag D. Activation of the coagulation cascade in falciparum malaria. Trans R Soc Trop Med Hyg 1989; 83: 762–766
  • Clemens R, Pramoolsinsap C, Lorenz R, Pukrittayakamee S, Bock H L, White N J. Activation of the coagulation cascade in severe falciparum malaria through the intrinsic pathway. Br J Haematol 1994; 87: 100–105
  • Mohanty D, Ghosh K, Nandwani S K, Shetty S, Phillips C, Rizvi S, Parmar B D. Fibrinolysis, inhibitors of blood coagulation, and monocyte derived coagulant activity in acute malaria. Am J Hematol 1997; 54: 23–29
  • Holst F G, Hemmer C J, Foth C, Seitz R, Egbring R, Dietrich M. Low levels of fibrin-stabilizing factor (factor XIII) in human Plasmodium falciparum malaria: correlation with clinical severity. Am J Trop Med Hyg 1999; 60: 99–104
  • Hemmer C J, Kern P, Holst F G, Radtke K P, Egbring R, Bierhaus A, Nawroth P P, Dietrich M. Activation of the host response in human Plasmodium falciparum malaria: relation of parasitemia to tumor necrosis factor/cachectin, thrombin-antithrombin III, and protein C levels. Am J Med 1991; 91: 37–44
  • Jaroonvesama N. Intravascular coagulation in falciparum malaria. Lancet 1972; 1: 221–223
  • Sucharit P, Chongsuphajaisiddhi T, Harinasuta T, Tongprasroeth N, Kasemsuth R. Studies on coagulation and fibrinolysis in cases of Falciparum malaria. Southeast Asian J Trop Med Pub Health 1975; 6: 33–39
  • Jaroonvesama N, Harinasuta T, Muangmanee L, Asawapokee N. Coagulation studies in falciparum and vivax malaria. Southeast Asian J Trop Med Pub Health 1975; 6: 419–424
  • Rojanasthien S, Surakamollert V, Isarangkura P, Boonpucknavig S. A new method for factor VII deficient substrate preparation and coagulation studies in malaria. Southeast Asian J Trop Med Pub Health 1993; 24: 225–228, (Suppl 1)
  • Punyagupta S, Srichaikul T, Nitiyanant P, Petchclai B. Acute pulmonary insufficiency in falciparum malaria: summary of 12 cases with evidence of disseminated intravascular coagulation. Am J Trop Med Hyg 1974; 23: 551–559
  • Rojanasthien S, Surakamolleart V, Boonpucknavig S, Isarangkura P. Hematological and coagulation studies in malaria. J Med Assoc Thai 1992; 75: 190–194, (Suppl 1)
  • Butler T, Tong M J, Fletcher J R, Dostalek R J, Robbins T O. Blood coagulation studies in Plasmodium falciparum malaria. Am J Med Sci 1973; 265: 63–67
  • Kelton J G, Keystone J, Moore J, Denomme G, Tozman E, Glynn M, Neame P B, Gauldie J, Jensen J. Immune-mediated thrombocytopenia of malaria. J Clin Invest 1983; 71: 832–836
  • Combes V, Taylor T E, Juhan-Vague I, Mege J L, Mwenechanya J, Tembo M, Grau G E, Molyneux M E. Circulating endothelial microparticles in Malawian children with severe falciparum malaria complicated with coma. Jama 2004; 291: 2542–2544
  • Ruf W. Protease-activated receptor signaling in the regulation of inflammation. Crit Care Med 2004; 32: S287–S292
  • Slofstra S H, Spek C A, ten Cate H. Disseminated intravascular coagulation. Hematol J 2003; 4: 295–302
  • Marshall J C. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 2001; 29: S99–S106
  • Opal S M, Esmon C T. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 2003; 7: 23–38
  • Taylor F B, Jr, Wada H, Kinasewitz G. Description of compensated and uncompensated disseminated intravascular coagulation (DIC) responses (non-overt and overt DIC) in baboon models of intravenous and intraperitoneal Escherichia coli sepsis and in the human model of endotoxemia: toward a better definition of DIC. Crit Care Med 2000; 28: S12–S19
  • Levi M, van der Poll T, Buller H R. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698–2704
  • Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, Takada M, Kanou S, Suzuki M, Tsuchiya J, Naruse T. Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Am J Hematol 1997; 56: 183–186
  • Park J W, Park S H, Yeom J S, Huh A J, Cho Y K, Ahn J Y, Min G S, Song G Y, Kim Y A, Ahn S Y, Woo S Y, Lee B E, Ha E H, Han H S, Yoo K, Seoh J Y. Serum cytokine profiles in patients withPlasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 2003; 97: 339–344
  • Lee S H, Looareesuwan S, Chan J, Wilairatana P, Vanijanonta S, Chong S M, Chong B H. Plasma macrophage colony-stimulating factor and P-selectin levels in malaria-associated thrombocytopenia. Thromb Haemost 1997; 77: 289–293
  • Rigdon H. The pathological lesions in the brain in malaria. Southern Med J 1944; 37: 687–694
  • Thomas J D. Clinical and histopathological correlation of cerebral malaria. Trop Geogr Med 1971; 23: 232–238
  • Chandrak P, Carr R A, Seed P T, Lucas S B, Liomba N G, Whitten R O, Grau G E, Mackenzie C D, Molyneux M E, Taylor T E. Fibrin thrombi in the brain in fatal pediatric malaria correlate with malarial pigment globules (abstract #297). 48th Meeting of the Am Soc Trop Med Hyg. 1999; 61
  • Boonpucknavig V, Boonpucknavig S, Udomsangpetch R, Nitiyanant P. An immunofluorescence study of cerebral malaria. A correlation with histopathology. Arch Pathol Lab Med 1990; 114: 1028–1034
  • Oo M M, Aikawa M, Than T, Aye T M, Myint P T, Igarashi I, Schoene W C. Human cerebral malaria: a pathological study. J Neuropathol Exp Neurol 1987; 46: 223–231
  • Dudgeon L S, Clarke C. A contribution to the microscopical histology of malaria, as occurring in Salonica forces in 1916, and a comparison of these findings with certain clinical phenomena. Lancet 1917; 190: 153–156
  • Edington G M. Pathology of malaria in West Africa. Br Med J 1967; 1: 715–718
  • Janota I, Doshi B. Cerebral malaria in the United Kingdom. J Clin Pathol 1979; 32: 769–772
  • Reid H A, Sucharit P. Ancrod, heparin, and -aminocaproic acid in simian Knowlesi malaria. Lancet 1972; 2: 1110–1112
  • Howard W A, Collins W E. Heparin therapy in simian Plasmodium knowlesi malaria. Lancet 1972; 2: 738–739
  • Dennis L H, Conrad M E. Anticoagulant and antimalarial action of heparin in simian malaria. Lancet 1968; 1: 769–771
  • Bergin J J. Malaria and the lung. Mil Med 1967; 132: 522–526
  • Punyagupta S, Srichaikul T, Akarawong K. The use of heparin in fatal pulmonary edema due to acute falciparum malaria. J Med Assoc Thai 1972; 55: 121–131
  • von Sonnenburg F, Loscher T, Nothdurft H D, Prufer L. [Complicated malaria tropica: specific and supportive therapy in the imported diseases]. Dtsch Med Wochenschr 1986; 111: 934–938
  • Hemmer C J, Kern P, Holst F G, Nawroth P P, Dietrich M. Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective, randomized study. Am J Trop Med Hyg 1991; 45: 608–612
  • Pukrittayakamee S, Clemens R, Pramoolsinsap C, Karges H E, Vanijanonta S, Bunnag D, White N J. Polymorphonuclear leucocyte elastase in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 1992; 86: 598–601
  • Mavrommatis A C, Theodoridis T, Economou M, Kotanidou A, El Ali M, Christopoulou-Kokkinou V, Zakynthinos S G. Activation of the fibrinolytic system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intensive Care Med 2001; 27: 1853–1859
  • Mavrommatis A C, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S. Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med 2000; 28: 451–457
  • Oren H, Cingoz I, Duman M, Yilmaz S, Irken G. Disseminated intravascular coagulation in pediatric patients: clinical and laboratory features and prognostic factors influencing the survival. Pediatr Hematol Oncol 2005; 22: 679–688
  • Bone R C, Balk R A, Cerra F B, Dellinger R P, Fein A M, Knaus W A, Schein R M, Sibbald W J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644–1655
  • Makkar R P, Mukhopadhyay S, Monga A, Monga A, Gupta A K. Plasmodium vivax malaria presenting with severe thrombocytopenia. Braz J Infect Dis 2002; 6: 263–265
  • Karanikas G, Zedwitz-Liebenstein K, Eidherr H, Schuetz M, Sauerman R, Dudczak R, Winkler S, Pabinger I, Kletter K. Platelet kinetics and scintigraphic imaging in thrombocytopenic malaria patients. Thromb Haemost 2004; 91: 553–557
  • Sorensen P G, Mickley H, Schmidt K G. Malaria-induced immune thrombocytopenia. Vox Sang 1984; 47: 68–72
  • Skudowitz R B, Katz J, Lurie A, Levin J, Metz J. Mechanisms of thrombocytopenia in malignant tertian malaria. Br Med J 1973; 2: 515–518
  • Mohanty D, Marwaha N, Ghosh K, Sharma S, Garewal G, Shah S, Devi S, Das K C. Functional and ultrastructural changes of platelets in malarial infection. Trans R Soc Trop Med Hyg 1988; 82: 369–375
  • Mammen E F. Disseminated intravascular coagulation (DIC). Clin Lab Sci 2000; 13: 239–245
  • Dempfle C E. Coagulopathy of sepsis. Thromb Haemost 2004; 91: 213–224
  • Reid H A, Nkrumah F K. Fibrin-degradation products in cerebral malaria. Lancet 1972; 1: 218–221
  • Skjorten F. Hyaline microthrombi in an autopsy material. A quantitative study with discussion of the relationship to small vessel thrombosis. Acta Pathol Microbiol Scand 1969; 76: 361–375
  • Tanaka K, Imamura T. Incidence and clinicopathological significance of DIC in autopsy cases. Bibl Haematol 1983; 49: 79–93
  • Watanabe T, Imamura T, Nakagaki K, Tanaka K. Disseminated intravascular coagulation in autopsy cases. Its incidence and clinicopathologic significance. Pathol Res Pract 1979; 165: 311–322
  • Hersch M, Gnidec A A, Bersten A D, Troster M, Rutledge F S, Sibbald W J. Histologic and ultrastructural changes in nonpulmonary organs during early hyperdynamic sepsis. Surgery 1990; 107: 397–410
  • Lasch H G, Heene D H. Heparin therapy of diffuse intravascular coagulation (DIC). Thromb Diath Haemorrh 1975; 33: 105–106
  • Corrigan J J, Jr, Jordan C M. Heparin therapy in septicemia with disseminated intravascular coagulation. N Engl J Med 1970; 283: 778–782
  • Taylor F B, Jr., Chang A C, Peer G T, Mather T, Blick K, Catlett R, Lockhart M S, Esmon C T. DEGR-factor Xa blocks disseminated intravascular coagulation initiated by Escherichia coli without preventing shock or organ damage. Blood 1991; 78: 364–368
  • Taylor F B, Jr, Chang A, Ruf W, Morrissey J H, Hinshaw L, Catlett R, Blick K, Edgington T S. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33: 127–134
  • Creasey A A, Chang A C, Feigen L, Wun T C, Taylor F B, Jr, Hinshaw L B. Tissue factor pathway inhibitor reduces mortality fromEscherichia coli septic shock. J Clin Invest 1993; 91: 2850–2860
  • Taylor F B, Chang A C, Peer G, Li A, Ezban M, Hedner U. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and -8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 1998; 91: 1609–1615
  • Welty-Wolf K E, Carraway M S, Ortel T L, Ghio A J, Idell S, Egan J, Zhu X, Jiao J A, Wong H C, Piantadosi C A. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. Am J Physiol Lung Cell Mol Physiol 2006; 290: L21–L31
  • Geisbert T W, Hensley L E, Jahrling P B, Larsen T, Geisbert J B, Paragas J, Young H A, Fredeking T M, Rote W E, Vlasuk G P. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 2003; 362: 1953–1958
  • Parmar N, Albisetti M, Berry L R, Chan A K. The fibrinolytic system in newborns and children. Clin Lab 2006; 52: 115–124
  • Franchini M. Haemostasis and pregnancy. Thromb Haemost 2006; 95: 401–413
  • Rogerson S J, Grau G E, Hunt N H. The microcirculation in severe malaria. Microcirculation 2004; 11: 559–576
  • Bierhaus A, Zhang Y, Deng Y, Mackman N, Quehenberger P, Haase M, Luther T, Muller M, Bohrer H, Greten J, et al. Mechanism of the tumor necrosis factor alpha-mediated induction of endothelial tissue factor. J Biol Chem 1995; 270: 26419–26432
  • Parry G C, Mackman N. Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler Thromb Vasc Biol 1995; 15: 612–621
  • Johnson K, Aarden L, Choi Y, De Groot E, Creasey A. The proinflammatory cytokine response to coagulation and endotoxin in whole blood. Blood 1996; 87: 5051–5060
  • Charo I F, Taubman M B. Chemokines in the pathogenesis of vascular disease. Circ Res 2004; 95: 858–866
  • van d er, Poll T, Buller H R, ten Cate H, Wortel C H, Bauer K A, van Deventer S J, Hack C E, Sauerwein H P, Rosenberg R D, ten Cate J W. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 1990; 322: 1622–1627
  • van d er, Poll T, Levi M, Buller H R, van Deventer S J, de Boer J P, Hack C E, ten Cate J W. Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med 1991; 174: 729–732
  • de Jonge E, Friederich P W, Vlasuk G P, Rote W E, Vroom M B, Levi M, van der Poll T. Activation of coagulation by administration of recombinant factor VIIa elicits interleukin 6 (IL-6) and IL-8 release in healthy human subjects. Clin Diagn Lab Immunol 2003; 10: 495–497
  • Coughlin S R. Protease-activated receptors in hemostasis, thrombosis, and vascular biology. J Thromb Haemost 2005; 3: 1800–1814
  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger T A, Hollenberg M D. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26: 1–43
  • Riewald M, Kravchenko V V, Petrovan R J, O'Brien P J, Brass L F, Ulevitch R J, Ruf W. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood 2001; 97: 3109–3116
  • Camerer E, Huang W, Coughlin S R. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 2000; 97: 5255–5260
  • Vergnolle N. Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J Immunol 1999; 163: 5064–5069
  • Cirino G, Cicala C, Bucci M, Sorrentino L, Ambrosini G, De Dominicis G, Altieri D C. Factor Xa as an interface between coagulation and inflammation. Molecular mimicry of factor Xa association with effector cell protease receptor-1 induces acute inflammationin vivo. J Clin Invest 1997; 99: 2446–2451
  • Busch G, Seitz I, Steppich B, Hess S, Eckl R, Schomig A, Ott I. Coagulation factor Xa stimulates interleukin-8 release in endothelial cells and mononuclear leukocytes: implications in acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 25: 461–466
  • Senden N H, Jeunhomme T M, Heemskerk J W, Wagenvoord R, van't Veer C, Hemker H C, Buurman W A. Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 1998; 161: 4318–4324
  • Johnson K, Choi Y, DeGroot E, Samuels I, Creasey A, Aarden L. Potential mechanisms for a proinflammatory vascular cytokine response to coagulation activation. J Immunol 1998; 160: 5130–5135
  • Chu A J. Tissue factor upregulation drives a thrombosis-inflammation circuit in relation to cardiovascular complications. Cell Biochem Funct 2006; 24: 173–192
  • Liu Y, Pelekanakis K, Woolkalis M J. Thrombin and tumor necrosis factor alpha synergistically stimulate tissue factor expression in human endothelial cells: regulation through c-Fos and c-Jun. J Biol Chem 2004; 279: 36142–36147
  • Hezi-Yamit A, Wong P W, Bien-Ly N, Komuves L G, Prasad K S, Phillips D R, Sinha U. Synergistic induction of tissue factor by coagulation factor Xa and TNF: evidence for involvement of negative regulatory signaling cascades. Proc Natl Acad Sci USA 2005; 102: 12077–12082
  • Lorant D E, Patel K D, McIntyre T M, McEver R P, Prescott S M, Zimmerman G A. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 1991; 115: 223–234
  • Shimizu T, Nishihira J, Watanabe H, Abe R, Honda A, Ishibashi T, Shimizu H. Macrophage migration inhibitory factor is induced by thrombin and factor Xa in endothelial cells. J Biol Chem 2004; 279: 13729–13737
  • Osterud B, Rapaport S I. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 1977; 74: 5260–5264
  • Broze G J, Jr. Tissue factor pathway inhibitor and the revised theory of coagulation. Annu Rev Med 1995; 46: 103–112
  • ten Cate H, Bauer K A, Levi M, Edgington T S, Sublett R D, Barzegar S, Kass B L, Rosenberg R D. The activation of factor X and prothrombin by recombinant factor VIIain vivo is mediated by tissue factor. J Clin Invest 1993; 92: 1207–1212
  • Bauer K A, Kass B L, ten Cate H, Hawiger J J, Rosenberg R D. Factor IX is activated in vivo by the tissue factor mechanism. Blood 1990; 76: 731–736
  • Francischetti I M, Valenzuela J G, Andersen J F, Mather T N, Ribeiro J M. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick,Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 2002; 99: 3602–3612
  • Monteiro R Q, Rezaie A R, Ribeiro J M, Francischetti I M. Ixolaris: a factor Xa heparin-binding exosite inhibitor. Biochem J 2005; 387: 871–877
  • Pino P, Vouldoukis I, Kolb J P, Mahmoudi N, Desportes-Livage I, Bricaire F, Danis M, Dugas B, Mazier D. Plasmodium falciparum—infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 2003; 187: 1283–1290
  • Viebig N K, Wulbrand U, Forster R, Andrews K T, Lanzer M, Knolle P A. Direct activation of human endothelial cells by Plasmodium falciparum-infected erythrocytes. Infect Immunol 2005; 73: 3271–3277
  • Yipp B G, Robbins S M, Resek M E, Baruch D I, Looareesuwan S, Ho M. Src-family kinase signaling modulates the adhesion ofPlasmodium falciparum on human microvascular endothelium under flow. Blood 2003; 101: 2850–2857
  • Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, Mazier D, Vouldoukis I. Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 2006; 150: 166–173
  • Tripathi A K, Sullivan D J, Stins M F. Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immunol 2006; 74: 3262–3270
  • Pologe L G, Ravetch J V. A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. Nature 1986; 322: 474–477
  • Crabb B S, Cooke B M, Reeder J C, Waller R F, Caruana S R, Davern K M, Wickham M E, Brown G V, Coppel R L, Cowman A F. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 1997; 89: 287–296
  • Raventos-Suarez C, Kaul D K, Macaluso F, Nagel R L. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 1985; 82: 3829–3833
  • Monroe D M, Hoffman M, Roberts H R. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22: 1381–1389
  • Mann K G, Butenas S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 2003; 23: 17–25
  • Eda S, Sherman I W. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 2002; 12: 373–384
  • Mohanty D, Marwaha N, Ghosh K, Chauhan A P, Shah S, Sharma S, Das K C. Vascular occlusion and disseminated intravascular coagulation in falciparum malaria. Br Med J (Clin Res Ed) 1985; 290: 115–116
  • Udeinya I J, Miller L H. Plasmodium falciparum: effect of infected erythrocytes on clotting time of plasma. Am J Trop Med Hyg 1987; 37: 246–249
  • Broze G J, Jr, Warren L A, Novotny W F, Higuchi D A, Girard J J, Miletich J P. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 1988; 71: 335–343
  • Rezaie A R. Insight into the molecular basis of coagulation proteinase specificity by mutagenesis of the serpin antithrombin. Biochemistry 2002; 41: 12179–12185
  • Esmon C T. The protein C pathway. Chest 2003; 124: 26S–32S
  • Drake T A, Cheng J, Chang A, Taylor F B, Jr. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. Am J Pathol 1993; 142: 1458–1470
  • Ishii H, Salem H H, Bell C E, Laposata E A, Majerus P W. Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain. Blood 1986; 67: 362–365
  • Joyce D E, Gelbert L, Ciaccia A, DeHoff B, Grinnell B W. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001; 276: 11199–11203
  • Clark I A, Budd A C, Alleva L M, Cowden W B. Human malarial disease: a consequence of inflammatory cytokine release. Malar J 2006; 5: 85–117
  • Nguyen T C, Carcillo J A. Bench-to-bedside review: Thrombocytopenia-associated multiple organ failure—a newly appreciated syndrome in the critically ill. Crit Care 2006; 10: 235–243
  • Gawaz M, Langer H, May A E. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378–3384
  • Weyrich A S, Zimmerman G A. Platelets: signaling cells in the immune continuum. Trends Immunol 2004; 25: 489–495
  • Dellas C, Loskutoff D J. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost 2005; 93: 631–640
  • Henn V, Slupsky J R, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek R A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591–594
  • Grau G E, Mackenzie C D, Carr R A, Redard M, Pizzolato G, Allasia C, Cataldo C, Taylor T E, Molyneux M E. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 2003; 187: 461–466
  • Patnaik J K, Das B S, Mishra S K, Mohanty S, Satpathy S K, Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 1994; 51: 642–647
  • Ghigo D, Todde R, Ginsburg H, Costamagna C, Gautret P, Bussolino F, Ulliers D, Giribaldi G, Deharo E, Gabrielli G, Pescarmona G, Bosia A. Erythrocyte stages of Plasmodium falciparum exhibit a high nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med 1995; 182: 677–688
  • Contrino J, Hair G, Kreutzer D L, Rickles F R. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 1996; 2: 209–215
  • Lupu C, Westmuckett A D, Peer G, Ivanciu L, Zhu H, Taylor F B, Jr, Lupu F. Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model ofEscherichia coli sepsis. Am J Pathol 2005; 167: 1161–1172
  • Hebbel R P, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation 2004; 11: 129–151
  • Solovey A, Gui L, Key N S, Hebbel R P. Tissue factor expression by endothelial cells in sickle cell anemia. J Clin Invest 1998; 101: 1899–1904
  • Faulk W P, Labarrere C A, Carson S D. Tissue factor: identification and characterization of cell types in human placentae. Blood 1990; 76: 86–96
  • Vinetz J M, Gilman R H. Asymptomatic Plasmodium parasitemia and the ecology of malaria transmission. Am J Trop Med Hyg 2002; 66: 639–640
  • Hemmer C J, Lehr H A, Westphal K, Unverricht M, Kratzius M, Reisinger E C. Plasmodium falciparum malaria: reduction of endothelial cell apoptosis in vitro. Infect Immunol 2005; 73: 1764–1770
  • Jin M, Drwal G, Bourgeois T, Saltz J, Wu H M. Distinct proteome features of plasma microparticles. Proteomics 2005; 5: 1940–1952
  • Furie B, Furie B C. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004; 10: 171–178
  • Giesen P L, Rauch U, Bohrmann B, Kling D, Roque M, Fallon J T, Badimon J J, Himber J, Riederer M A, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311–2315
  • Ostrowski S R, Ullum H, Goka B Q, Hoyer-Hansen G, Obeng-Adjei G, Pedersen B K, Akanmori B D, Kurtzhals J A. Plasma concentrations of soluble urokinase-type plasminogen activator receptor are increased in patients with malaria and are associated with a poor clinical or a fatal outcome. J Infect Dis 2005; 191: 1331–1341
  • Alleva L M, Yang H, Tracey K J, Clark I A. High mobility group box 1 (HMGB1) protein: possible amplification signal in the pathogenesis of falciparum malaria. Trans R Soc Trop Med Hyg 2005; 99: 171–174
  • Endler G, Mannhalter C. Polymorphisms in coagulation factor genes and their impact on arterial and venous thrombosis. Clin Chim Acta 2003; 330: 31–55
  • Mockenhaupt F P, Cramer J P, Hamann L, Stegemann M S, Eckert J, Oh N R, Otchwemah R N, Dietz E, Ehrhardt S, Schroder N W, Bienzle U, Schumann R R. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA 2006; 103: 177–182
  • Mayer D C, Mu J B, Feng X, Su X Z, Miller L H. Polymorphism in aPlasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J Exp Med 2002; 196: 1523–1528
  • Kempton C L, Hoffman M, Roberts H R, Monroe D M. Platelet heterogeneity: variation in coagulation complexes on platelet subpopulations. Arterioscler Thromb Vasc Biol 2005; 25: 861–866
  • Cines D B, Pollak E S, Buck C A, Loscalzo J, Zimmerman G A, McEver R P, Pober J S, Wick T M, Konkle B A, Schwartz B S, Barnathan E S, McCrae K R, Hug B A, Schmidt A M, Stern D M. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527–3561
  • Montgomery J, Milner D A, Jr, Tse M T, Njobvu A, Kayira K, Dzamalala C P, Taylor T E, Rogerson S J, Craig A G, Molyneux M E. Genetic analysis of circulating and sequestered populations of Plasmodium falciparum in fatal pediatric malaria. J Infect Dis 2006; 194: 115–122
  • Taylor F B, Jr. Staging of the pathophysiologic responses of the primate microvasculature toEscherichia coli and endotoxin: examination of the elements of the compensated response and their links to the corresponding uncompensated lethal variants. Crit Care Med 2001; 29: S78–S89
  • Gachot B, Wolff M, Nissack G, Veber B, Vachon F. Acute lung injury complicating importedPlasmodium falciparum malaria. Chest 1995; 108: 746–749
  • Maguire G P, Handojo T, Pain M C, Kenangalem E, Price R N, Tjitra E, Anstey N M. Lung injury in uncomplicated and severe falciparum malaria: a longitudinal study in Papua, Indonesia. J Infect Dis 2005; 192: 1966–1974
  • Ruf W, Riewald M. Tissue factor-dependent coagulation protease signaling in acute lung injury. Crit Care Med 2003; 31: S231–S237
  • Rogerson S J, Pollina E, Getachew A, Tadesse E, Lema V M, Molyneux M E. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 2003; 68: 115–119
  • Imamura T, Sugiyama T, Cuevas L E, Makunde R, Nakamura S. Expression of tissue factor, the clotting initiator, on macrophages in Plasmodium falciparum-infected placentas. J Infect Dis 2002; 186: 436–440
  • Abrams E T, Brown H, Chensue S W, Turner G D, Tadesse E, Lema V M, Molyneux M E, Rochford R, Meshnick S R, Rogerson S J. Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated beta chemokine expression. J Immunol 2003; 170: 2759–2764
  • Osterud B, Bjorklid E. Sources of tissue factor. Semin Thromb Hemost 2006; 32: 11–23
  • Isermann B, Sood R, Pawlinski R, Zogg M, Kalloway S, Degen J L, Mackman N, Weiler H. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 2003; 9: 331–337
  • Lanir N, Aharon A, Brenner B. Procoagulant and anticoagulant mechanisms in human placenta. Semin Thromb Hemost 2003; 29: 175–184
  • Hunt N H, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana I M, Miu J, Ball H J. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36: 569–582
  • Areekul S, Devakul K, Vivatanasesth P, Kanakakorn K, Kasemsuth R. Studies on fibrinolytic activity in patients with Plasmodium falcipalum malaria. Southeast Asian J Trop Med Public Health 1972; 3: 198–204
  • Karunaweera N D, Grau G E, Gamage P, Carter R, Mendis K N. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 1992; 89: 3200–3203
  • Hotchkiss R S, Nicholson D W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6: 813–822
  • Broze G J, Jr. Why do hemophiliacs bleed?. Hosp Pract (Off Ed) 1992; 27: 71–74; 79–82; 85–76
  • Toure-Balde A, Sarthou J L, Aribot G, Michel P, Trape J F, Rogier C, Roussilhon C. Plasmodium falciparum induces apoptosis in human mononuclear cells. Infect Immunol 1996; 64: 744–750
  • Kern P, Dietrich M, Hemmer C, Wellinghausen N. Increased levels of soluble Fas ligand in serum in Plasmodium falciparum malaria. Infect Immunol 2000; 68: 3061–3063
  • Matsumoto J, Kawai S, Terao K, Kirinoki M, Yasutomi Y, Aikawa M, Matsuda H. Malaria infection induces rapid elevation of the soluble Fas ligand level in serum and subsequent T lymphocytopenia: possible factors responsible for the differences in susceptibility of two species of Macaca monkeys to Plasmodium coatneyi infection. Infect Immunol 2000; 68: 1183–1188
  • Bierhaus A, Hemmer C J, Mackman N, Kutob R, Ziegler R, Dietrich M, Nawroth P P. Antiparasitic treatment of patients withP. falciparum malaria reduces the ability of patient serum to induce tissue factor by decreasing NF-kappa B activation. Thromb Haemost 1995; 73: 39–48
  • Conway E M, Rosenberg R D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol 1988; 8: 5588–5592
  • Nawroth P P, Stern D M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986; 163: 740–745
  • Friedl J, Puhlmann M, Bartlett D L, Libutti S K, Turner E N, Gnant M F, Alexander H R. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood 2002; 100: 1334–1339
  • Puhlmann M, Weinreich D M, Farma J M, Carroll N M, Turner E M, Alexander H R, Jr. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med 2005; 37–44
  • Gingrich M B, Traynelis S F. Serine proteases and brain damage—is there a link?. Trends Neurosci 2000; 23: 399–407
  • Medana I M, Turner G D. Human cerebral malaria and the blood-brain barrier. Int J Parasitol 2006; 36: 555–568
  • Huber S M, Duranton C, Lang F. Patch-clamp analysis of the “new permeability pathways” in malaria-infected erythrocytes. Int Rev Cytol 2005; 246: 59–134
  • Schofield L, Novakovic S, Gerold P, Schwarz R T, McConville M J, Tachado S D. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 1996; 156: 1886–1896
  • Gazzinelli R T, Denkers E Y. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 2006; 6: 895–906
  • Krishnegowda G, Hajjar A M, Zhu J, Douglass E J, Uematsu S, Akira S, Woods A S, Gowda D C. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 2005; 280: 8606–8616
  • Debierre-Grockiego F, Schofield L, Azzouz N, Schmidt J, Santos de Macedo C, Ferguson M A, Schwarz R T. Fatty acids fromPlasmodium falciparum down-regulate the toxic activity of malaria glycosylphosphatidylinositols. Infect Immunol 2006; 74: 5487–5496
  • Schofield L, Hewitt M C, Evans K, Siomos M A, Seeberger P H. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 2002; 418: 785–789
  • Parroche P, Lauw F N, Goutagny N, Latz E, Monks B G, Visintin A, Halmen K A, Lamphier M, Olivier M, Bartholomeu D C, Gazzinelli R T, Golenbock D T. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 2007; 104: 1919–1924
  • Coban C, Ishii K J, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 2005; 201: 19–25
  • Jaramillo M, Plante I, Ouellet N, Vandal K, Tessier P A, Olivier M. Hemozoin-inducible proinflammatory events in vivo: potential role in malaria infection. J Immunol 2004; 172: 3101–3110
  • Wenisch C, Spitzauer S, Florris-Linau K, Rumpold H, Vannaphan S, Parschalk B, Graninger W, Looareesuwan S. Complement activation in severe Plasmodium falciparum malaria. Clin Immunol Immunopathol 1997; 85: 166–171
  • Perrin L H, Mackey L J, Miescher P A. The hematology of malaria in man. Semin Hematol 1982; 19: 70–82
  • Saadi S, Holzknecht R A, Patte C P, Stern D M, Platt J L. Complement-mediated regulation of tissue factor activity in endothelium. J Exp Med 1995; 182: 1807–1814
  • Jansen P M, Pixley R A, Brouwer M, de Jong I W, Chang A C, Hack C E, Taylor F B, Jr, Colman R W. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 1996; 87: 2337–2344
  • Colman R W, Schmaier A H. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997; 90: 3819–3843
  • Schmaier A H. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003; 285: R1–R13
  • Gillis S, Furie B C, Furie B. Interactions of neutrophils and coagulation proteins. Semin Hematol 1997; 34: 336–342
  • Marshall J C. Neutrophils in the pathogenesis of sepsis. Crit Care Med 2005; 33: S502–S505
  • Takahasi H, Urano T, Nagai N, Takada Y, Takada A. Neutrophil elastase may play a key role in developing symptomatic disseminated intravascular coagulation and multiple organ failure in patients with head injury. J Trauma 2000; 49: 86–91
  • Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood 1990; 76: 2024–2029
  • Higuchi D A, Wun T C, Likert K M, Broze G J, Jr. The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 1992; 79: 1712–1719
  • Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. Faseb J 2006; 20: 1224–1226
  • Pabon A, Carmona J, Burgos L C, Blair S. Oxidative stress in patients with non-complicated malaria. Clin Biochem 2003; 36: 71–78
  • Ince C. The microcirculation is the motor of sepsis. Crit Care 2005; 9: S13–S19, (Suppl 4)
  • Jaffe E A. Cell biology of endothelial cells. Hum Pathol 1987; 18: 234–239
  • Hebbel R P. Special issue of microcirculation: examination of the vascular pathobiology of sickle cell anemia. Microcirculation 2004; 11: 99–100
  • Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D. Blood-brain barrier breakdown during cerebral malaria: suicide or murder?. Thromb Haemost 2005; 94: 336–340
  • Hutter R, Valdiviezo C, Sauter B V, Savontaus M, Chereshnev I, Carrick F E, Bauriedel G, Luderitz B, Fallon J T, Fuster V, Badimon J J. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 2004; 109: 2001–2008
  • Casciola-Rosen L, Rosen A, Petri M, Schlissel M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci USA 1996; 93: 1624–1629
  • Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet J M, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999; 99: 348–353
  • Bombeli T, Karsan A, Tait J F, Harlan J M. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89: 2429–2442
  • Ruf W. Emerging roles of tissue factor in viral hemorrhagic fever. Trends Immunol 2004; 25: 461–464
  • Kendrick B J, Gray A G, Pickworth A, Watters M P. Drotrecogin alfa (activated) in severe falciparum malaria. Anaesthesia 2006; 61: 899–902
  • Wellems T E. Transporter of a malaria catastrophe. Nat Med 2004; 10: 1169–1171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.