0
Views
0
CrossRef citations to date
0
Altmetric
Original

Hydrogen Peroxide Emerges as a Regulator of Tone in Skeletal Muscle Arterioles During Juvenile Growth

, &
Pages 151-161 | Received 16 Apr 2007, Accepted 06 May 2007, Published online: 10 Jul 2009

REFERENCES

  • Balch Samora J, Frisbee J C, Boegehold M A. Growth-dependent changes in endothelial factors regulating arteriolar tone. Am J Physiol Heart Circ Physiol 2007; 292: H207–H214
  • Cai H. NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 2005; 96: 818–822
  • Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840–844
  • Campbell W B, Gebremedhin D, Pratt P F, Harder D R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996; 78: 415–423
  • Chen K, Thomas S R, Keaney J F, Jr. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med 2003; 35: 117–132
  • Coleman H A, Tare M, Parkington H C. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. Am J Physiol Heart Circ Physiol 2001; 280: H2478–H2483
  • Cosentino F, Patton S, d'Uscio L V, Werner E R, Werner-Felmayer G, Moreau P, Malinski T, Luscher T F. Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 1998; 101: 1530–1537
  • Coyle C H, Martinez L J, Coleman M C, Spitz D R, Weintraub N L, Kader K N. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic Biol Med 2006; 40: 2206–2213
  • Cseko C, Bagi Z, Koller A. Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways. J Appl Physiol 2004; 97: 1130–1137
  • DeLano F A, Schmid-Schönbein G W, Skalak T C, Zweifach B W. Penetration of the systemic blood pressure into the microvasculature of rat skeletal muscle. Microvasc Res 1991; 41: 92–110
  • Filipovic D M, Reeves W B. Hydrogen peroxide activates glibenclamide-sensitive K+ channels in LLC-PK1 cells. Am J Physiol 1997; 272: C737–C743
  • Fredricks K T, Liu Y, Lombard J H. Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2. Am J Physiol 1994; 267: H706–H715
  • Frisbee J C, Roman R J, Murali Krishna U, Falck J R, Lombard J H. Altered mechanisms underlying hypoxic dilation of skeletal muscle resistance arteries of hypertensive versus normotensive Dahl rats. Microcirculation 2001; 8: 115–127
  • Giulivi C, Boveris A, Cadenas E. The steady-state concentrations of oxygen radicals in mitochondria. Reactive Oxygen Species in Biological Systems, D L Gilbert, C A Colton. Kluwer Academic/Plenum Publishers, New York 1999
  • Halliwell B, Clement M V, Long L H. Hydrogen peroxide in the human body. FEBS Lett 2000; 486: 10–13
  • Iida Y, Katusic Z S. Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 2000; 31: 2224–2230
  • Klabunde R E, Anderson D E. Role of nitric oxide and reactive oxygen species in platelet-activating factor-induced microvascular leakage. J Vasc Res 2002; 39: 238–245
  • Koller A, Bagi Z. Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles. Am J Physiol Heart Circ Physiol 2004; 287: H2461–H2467
  • Kunsch C, Medford R M. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999; 85: 753–766
  • Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer D J, Sessa W C, Walsh K. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000; 6: 1004–1010
  • Lacza Z, Puskar M, Kis B, Perciaccante J V, Miller A W, Busija D W. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol 2002; 283: H406–H411
  • Lenda D M, Sauls B A, Boegehold M A. Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol Heart Circ Physiol 2000; 279: H7–H14
  • Linderman J R, Boegehold M A. Arteriolar network growth in rat striated muscle during juvenile maturation. Int J Microcirc Clin Exp 1996; 16: 232–239
  • Linderman J R, Boegehold M A. Growth-related changes in the influence of nitric oxide on arteriolar tone. Am J Physiol 1999; 277: H1570–H1578
  • Lum H, Roebuck K A. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 2001; 280: C719–C741
  • Marvar P J, Hammer L W, Boegehold M A. Hydrogen peroxide-dependent arteriolar dilation in contracting muscle of rats fed normal and high salt diets. Microcirculation 2007; 14: 779–791
  • Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai Y, Hirakawa Y, Akaike T, Takeshita A. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 2003; 23: 1224–1230
  • Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 2000; 106: 1521–1530
  • Miura H, Bosnjak J J, Ning G, Saito T, Miura M, Gutterman D D. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 2003; 92: e31–e40
  • Miura H, Liu Y, Gutterman D D. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2 +-activated K+ channels. Circulation 1999; 99: 3132–3138
  • Nelson M T, Quayle J M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995; 268: C799–C822
  • Nurkiewicz T R, Boegehold M A. Calcium-independent release of endothelial nitric oxide in the arteriolar network: onset during rapid juvenile growth. Microcirculation 2004; 11: 453–462
  • Silveira L R, Pereira-Da-Silva L, Juel C, Hellsten Y. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 2003; 35: 455–464
  • Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2007; 27: 266–274
  • Sobey C G, Heistad D D, Faraci F M. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 1997; 28: 2290–2294, discussion, 2295
  • Standen N B, Quayle J M, Davies N W, Brayden J E, Huang Y, Nelson M T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989; 245: 177–180
  • Tarpey M M, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 2001; 89: 224–236
  • Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 2003; 285: H2255–H2263
  • Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med 2003; 31: S76–S84
  • Uluoglu C, Zengil H. Comparison of different de-endothelization procedures in the isolated rat thoracic aorta: a short communication. Res Commun Mol Pathol Pharmacol 2003; 113–114: 289–297
  • Ungvari Z, Csiszar A, Koller A. Increases in endothelial Ca2 + activate KCa channels and elicit EDHF-type arteriolar dilation via gap junctions. Am J Physiol Heart Circ Physiol 2002; 282: H1760–H1767
  • Ungvari Z, Sun D, Huang A, Kaley G, Koller A. Role of endothelial [Ca2 +]i in activation of eNOS in pressurized arterioles by agonists and wall shear stress. Am J Physiol Heart Circ Physiol 2001; 281: H606–H612
  • Welsh D G, Segal S S. Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo. Am J Physiol Heart Circ Physiol 2000; 278: H1832–H1839
  • Willis A P, Leffler C W. Endothelial NO and prostanoid involvement in newborn and juvenile pig pial arteriolar vasomotor responses. Am J Physiol Heart Circ Physiol 2001; 281: H2366–H2377
  • Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 2003; 107: 1040–1045
  • Zhu J, Mori T, Huang T, Lombard J H. Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 2004; 286: H575–H583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.