25
Views
1
CrossRef citations to date
0
Altmetric
Articles

RBC Aggregation: More Important than RBC Adhesion to Endothelial Cells as a Determinant of In Vivo Blood Flow in Health and Disease

&
Pages 585-590 | Received 27 Mar 2008, Published online: 10 Jul 2009

References

  • Alonso C, Pries AR, Gaehtgens P. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am J Physiol 1993; 265: H553–H561
  • Alonso C, Pries AR, Gaehtgens P. Time-dependent rheological behavior of blood flow at low shear in narrow horizontal tubes. Biorheology 1989; 26: 229–246
  • Armstrong JK, Meiselman HJ, Wenby R, Fisher TC. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Biorheology 2005; 38: 239–247
  • Baskurt OK, Bor-Kucukatay M, Yalcin O. The effect of red blood cell aggregation on blood flow resistance. Biorheology 1999; 36: 447–452
  • Baskurt OK, Edremitlioglu M. Myocardial tissue hematocrit: existence of a transmural gradient and alterations after fibrinogen infusions. Clin Hemorheol 1995; 15: 97–105
  • Baskurt OK, Yalcin O, Gungor F, Meiselman HJ. Hemorheological parameters as determinants of myocardial tissue hematocrit values. Clin Hemorheol Microcirc 2006; 35: 45–50
  • Baskurt OK, Yalcin O, Ozdem S, Armstrong JK, Meiselman HJ. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am J Physiol Heart Circ Physiol 2004; 286: H222–H229
  • Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC. Effect of erythrocyte aggregation on velocity profiles in venules. Am J Physiol Heart Circ Physiol 2001; 280: H222–H236
  • Bishop JJ, Popel AS, Intaglietta M, Johnson PC. Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration. Am J Physiol Heart Circ Physiol 2001; 281: H939–H950
  • Cabel M, Meiselman HJ, Popel AS, Johnson PC. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 1997; 272: H1020–H1032
  • Cabrales P, Tsai AG. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. Am J Physiol Heart Circ Physiol 2006; 291: H2445–H2452
  • Charansonney O, Mouren S, Dufaux J, Duvelleroy M, Vicaut E. Red blood cell aggregation and blood viscosity in an isolated heart preparation. Biorheology 1993; 30: 75–84
  • Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, van Tol A, Duncker DJ, Robbers-Visser D, Ursem NTC, van Haperen R, Wentzel JJ, Gijsen F, van der Steen AFW, de Crom R, Krams R. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 2007; 195: 225–235
  • Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol 2007; 292: H1209–H1224
  • Cokelet GR, Goldsmith HL. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res 1991; 68: 1–17
  • Cokelet GR, Meiselman HJ. Macro- and microrheological properties of blood. Handbook of Hemorheology and Hemodynamics, OK Baskurt, MR Hardeman, MW Rampling, HJ Meiselman. IOS Press, Amsterdam, Berlin, Oxford, Tokyo, Washington, DC 2007; 45–71
  • Durussel JJ, Berthault MF, Guiffant G, Dufaux J. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow. Acta Physiol Scand 1998; 163: 25–32
  • Fahraeus R. The influence of the rouleaux formation of the erythrocytes on the rheology of the blood. Acta Med Scand 1958; 161: 151–165
  • Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I. Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 2000; 168: 81–88
  • Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1–R12
  • Frisbee JC. Striated muscle microvascular hematocrit: the increase from rest to contraction. Microvasc Res 1998; 55: 184–186
  • Goldsmith HL, Cokelet GR, Gaehtgens P. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 1989; 257: H1005–H1015
  • Kim S, Popel AS, Intaglietta M, Johnson PC. Aggregate formation of erythrocytes in postcapillary venules. Am J Physiol Heart Circ Physiol 2005; 288: 584–590
  • Kim S, Zhen J, Popel AS, Intaglietta M, Johnson PC. Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates. Am J Physiol 2007; 293: H1947–H1954
  • Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC. Temporal and spatial variations of cell-free layer width in arterioles. Am J Physiol Heart Circ Physiol 2007; 293: H1526–H1535
  • Malek A, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035–2042
  • McKay CB, Meiselman HJ. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions. Am J Physiol Heart Circ Physiol 1988; 254: H238–H249
  • Nerem RM, Alexander RW, Chappell DC, Medford RM, Vagner SE, Taylor WR. The study of the influence of flow on vascular endothelial biology. Am J Med Sci 1998; 316: 169–175
  • Neu B, Armstrong JK, Fisher TC, Meiselman HJ. Aggregation of human RBC in binary dextran-PEG polymer mixtures. Biorheology 2001; 38: 53–68
  • Neu B, Meiselman HJ. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys J 2002; 83: 2482–2490
  • Neu B, Sowemimo-Coker SO, Meiselman HJ. Cell-cell affinity of senescent human erythrocytes. Biophys J 2003; 85: 75–84
  • Pries AR, Ley K, Gaehtgens P. Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 1986; 251: H1324–H1332
  • Reneman RS, Arts T, Hoeks APG. Wall shear stress—an important determinant of endothelial cell function and structure in the arterial system in vivo. J Vasc Res 2006; 43: 251–269
  • Schmid-Schonbein H. Fluid dynamics and hemorheology in vivo: the interactions of hemodynamic parameters and hemorheological “properties” in determining the flow behavior of blood in microvascular networks. In: Lowe GDO. Clinical Blood Rheology Florida: CRC Press, 1988, pp. 129–219.
  • Soutani M, Suzuki Y, Tateishi N, Maeda N. Quantificative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation. Am J Physiol Heart Circ Physiol 1995; 268: H1959–H1965
  • Tsai AG, Acero C, Nance PR, Cabrales P, Frangos JA, Buerk DG, Intaglietta M. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 2005; 288: H1730–H1739
  • Varin R, Mulder P, Richard V, Tamion F, Devaux C, Henry J, Lallemand F, Larebours G, Thuillez C. Exercise improves flow-mediated vasodilation of skeletal muscle arteries in rats with chronic heart failure: role of nitric oxide, prostanoids, and oxidant stress. Circulation 1999; 99: 2951–2957
  • Yalcin O, Aydin F, Ulker P, Uyuklu M, Gungor F, Armstrong JK, Meiselman HJ, Baskurt OK. Effects of red blood cell aggregation on myocardial hematocrit gradient using two approaches to increase aggregation. Am J Physiol Heart Circ Physiol 2006; 290: H765–H771
  • Yalcin O, Meiselman HJ, Armstrong JK, Baskurt OK. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation. Biorheology 2005; 42: 511–520
  • Yalcin O, Ulker P, Yavuzer U, Meiselman HJ, Baskurt OK.2008. Investigation of nitric oxide synthesizing mechanism of human umbilical vein endothelial cells exposed to shear stress in a cylindrical glass capillary perfused with red blood cell suspensions: role of aggregation. Am J Physiol Submitted.
  • Yalcin O, Uyuklu M, Armstrong JK, Meiselman HJ, Baskurt OK. Graded alterations of RBC aggregation influence in vivo blood flow resistance. Am J Physiol Heart Circ Physiol 2004; 287: H2644–H2650
  • Ziegler T, Silacci P, Harrison VJ, Hayoz D. Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension 1998; 32: 351–355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.