13
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Myoendothelial Junction: Breaking through the Matrix?

, &
Pages 307-322 | Received 18 Sep 2008, Published online: 26 Mar 2009

References

  • Absi M, Burnham MP, Weston AH, Harno E, Rogers M, Edwards G. Effects of methyl beta-cyclodextrin on EDHF responses in pig and rat arteries: association between SK(Ca) channels and caveolin-rich domains. Br J Pharmacol 2007; 151: 332–340
  • Bellien J, Thuillez C, Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol 2008; 22: 363–377
  • Beny JL. Information networks in the arterial wall. News Physiol Sci 1999; 14: 68–73
  • Bosanac I, Michikawa T, Mikoshiba K, Ikura M. Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 2004; 1742: 89–102
  • Brisset AC, Isakson BE, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal 2008; 11: 267–282
  • Budel S, Bartlett IS, Segal SS. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave. Circ Res 2003; 93: 61–68
  • Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci 2002; 23: 374–380
  • Campbell WB, Falck JR. Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 2007; 49: 590–596
  • Chattopadhyay N. Biochemistry, physiology, and pathophysiology of the extracellular calcium-sensing receptor. Int J Biochem Cell Biol 2000; 32: 789–804
  • Chattopadhyay N, Brown EM. Role of calcium-sensing receptor in mineral ion metabolism, and inherited disorders of calcium-sensing. Mol Genet Metab 2006; 89: 189–202
  • Chaytor AT, Martin PE, Edwards DH, Griffith TM. Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 2001; 280: H2441–H2450
  • Conejo VA, De Hara R, Sosa-Melgarejo J, Mendez JD. New insights in endothelial and smooth muscle cell communication. Biomed Pharmacother 2007; 61: 173–179
  • de Wit C, Wolfle SE, Hopfl B. Connexin-dependent communication within the vascular wall: contribution to the control of arteriolar diameter. Adv Cardiol 2006; 42: 268–283
  • de Wit C, Boettcher M, Schmidt VJ. Signaling across myoendothelial gap junctions—fact or fiction?. Cell Commun Adhes 2008; 15: 231–245
  • Dora KA, Doyle MP, Duling BR. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci U S Am 1997; 94: 6529–6534
  • Dora KA, Gallagher NT, McNeish A, Garland CJ. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 2008; 102: 1247–1255
  • Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269–272
  • Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 1995; 129: 805–817
  • Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ Res 2000; 87: 474–479
  • Evans WH, Leybaert L. Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. Cell Commun Adhes 2007; 14: 265–273
  • Evans WH, Martin PEM. Gap junctions: structure and function (review). Mol Membr Biol 2002; 19: 121–136
  • Fawcett DW. The Microcirculation. University of Illinois Press, UrbanaIllinois, USA 1959
  • Figueroa XF, Isakson BE, Duling BR. Connexins: gaps in our knowledge of vascular function. Physiology (Bethesda) 2004; 19: 277–284
  • Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH, Damon DN, Duling BR. Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 2003; 92: 793–800
  • Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 1997; 121: 1383–1391
  • Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol 1992; 263: H519–H525
  • Gilbertson-Beadling SK, Fisher C. A potential role for N-cadherin in mediating endothelial cell-smooth muscle cell interactions in the rat vasculature. Lab Invest 1993; 69: 203–209
  • Goligorsky MS, Li H, Brodsky S, Chen J. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 2002; 283: F1–F10
  • Guegan F, Tatin F, Leste-Lasserre T, Drutel G, Genot E, Moreau V. p190B RhoGAP regulates endothelial-cell-associated proteolysis through MT1-MMP and MMP2. J Cell Sci 2008; 121: 2054–2061
  • Gustafsson F, Mikkelsen HB, Arensbak B, Thuneberg L, Neve S, Jensen LJ, Holstein-Rathlou NH. Expression of connexin 37, 40, and 43 in rat mesenteric arterioles and resistance arteries. Histochem Cell Biol 2003; 119: 139–148
  • Haas TL, Duling BR. Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res 1997; 53: 113–120
  • Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 2006; 291: H2047–H2056
  • Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol 2007; 293: C1824–C1833
  • Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 2006; 281: 26391–26399
  • Hisatsune C, Mikoshiba K. Novel compartment implicated in calcium signaling—is it an “induced coupling domain”?. Sci STKE 2005; 2005: e53
  • Iacobas DA, Urban-Maldonado M, Iacobas S, Scemes E, Spray DC. Array analysis of gene expression in connexin-43 null astrocytes. Physiol Genom 2003; 15: 177–190
  • Isakson BE. Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2 + communication. J Cell Sci 2008; 121: 3664–3673
  • Isakson BE, Best AK, Duling BR. Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am J Physiol Heart Circ Physiol 2008; 294: H2898–H28904
  • Isakson BE, Damon DN, Day KH, Liao Y, Duling BR. Connexin40 and connexin43 in mouse aortic endothelium: evidence for coordinated regulation. Am J Physiol Heart Circ Physiol 2006; 290: H1199–H1205
  • Isakson BE, Duling BR. Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 2005; 97: 44–51
  • Isakson BE, Kronke G, Kadl A, Leitinger N, Duling BR. Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication. Arterioscler Thromb Vasc Biol 2006; 26: 2216–2221
  • Isakson BE, Ramos SI, Duling BR. Ca2 + and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 2007; 100: 246–254
  • Isshiki M, Anderson RG. Function of caveolae in Ca2 + entry and Ca2 +-dependent signal transduction. Traffic 2003; 4: 717–723
  • Jackson WF, Boerman EM, Lange EJ, Lundback SS, Cohen KD. Smooth muscle alpha(1D)-adrenoceptors mediate phenylephrine-induced vasoconstriction and increases in endothelial cell Ca(2 + ) in hamster cremaster arterioles. Br J Pharmacol 2008; 155: 514–522
  • Johnson RG, Herman WS, Preus DM. Homocellular and heterocellular gap junctions in Limulus: a thin-section and freeze-fracture study. J Ultrastruct Res 1973; 43: 298–312
  • Kameritsch P, Khandoga N, Nagel W, Hundhausen C, Lidington D, Pohl U. Nitric oxide specifically reduces the permeability of Cx37-containing gap junctions to small molecules. J Cell Physiol 2005; 203: 233–242
  • Kansui Y, Garland CJ, Dora KA. Enhanced spontaneous Ca(2 + ) events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 2008; 44: 135–146
  • Kenny LC, Baker PN, Kendall DA, Randall MD, Dunn WR. Differential mechanisms of endothelium-dependent vasodilator responses in human myometrial small arteries in normal pregnancy and pre-eclampsia. Clin Sci (Lond) 2002; 103: 67–73
  • Kruger O, Beny JL, Chabaud F, Traub O, Theis M, Brix K, Kirchhoff S, Willecke K. Altered dye diffusion and upregulation of connexin37 in mouse aortic endothelium deficient in connexin40. J Vasc Res 2002; 39: 160–172
  • Lamboley M, Pittet P, Koenigsberger M, Sauser R, Beny JL, Meister JJ. Evidence for signaling via gap junctions from smooth muscle to endothelial cells in rat mesenteric arteries: possible implication of a second messenger. Cell Calcium 2005; 37: 311–320
  • Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 2000; 384: 205–215
  • Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 2000; 149: 1503–1512
  • Lang NN, Luksha L, Newby DE, Kublickiene K. Connexin43 mediates endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy pregnant women. Am J Physiol Heart Circ Physiol 2007; 292: H1026–H1032
  • Laude AJ, Prior IA. Plasma membrane microdomains: organization, function, and trafficking. Mol Membr Biol 2004; 21: 193–205
  • Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT. Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 2008; 105: 9627–9632
  • Little TL, Xia J, Duling BR. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res 1995; 76: 498–504
  • Liu L, Mohammadi K, Aynafshar B, Wang H, Li D, Liu J, Ivanov AV, Xie Z, Askari A. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol 2003; 284: C1550–C1560
  • Looft-Wilson RC, Payne GW, Segal SS. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol 2004; 97: 1152–1158
  • Luksha L, Nisell H, Luksha N, Kublickas M, Hultenby K, Kublickiene K. Endothelium-derived hyperpolarizing factor in preeclampsia: heterogeneous contribution, mechanisms, and morphological prerequisites. Am J Physiol Regul Integr Comp Physiol 2008; 294: R510–R519
  • Makino A, Ohuchi K, Kamata K. Mechanisms underlying the attenuation of endothelium-dependent vasodilatation in the mesenteric arterial bed of the streptozotocin-induced diabetic rat. Br J Pharmacol 2000; 130: 549–556
  • Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003; 285: H1590–H1599
  • Martin PE, Wall C, Griffith TM. Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br J Pharmacol 2005; 144: 617–627
  • Mather S, Dora KA, Sandow SL, Winter P, Garland CJ. Rapid endothelial cell-selective loading of connexin40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 2005; 97: 399–407
  • McSherry IN, Sandow SL, Campbell WB, Falck JR, Hill MA, Dora KA. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation 2006; 13: 119–130
  • Michel RP, Hu F, Meyrick BO. Myoendothelial junctional complexes in postobstructive pulmonary vasculopathy: a quantitative electron microscopic study. Exp Lung Res 1995; 21: 437–452
  • Miyoshi J, Takai Y. Structural and functional associations of apical junctions with cytoskeleton. Biochim Biophys Acta 2008; 1778: 670–691
  • Moore DH, Ruska H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol 1957; 3: 457–462
  • Pannirselvam M, Verma S, Anderson TJ, Triggle CR. Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol 2002; 136: 255–263
  • Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8: 185–194
  • Rhodin JA. The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 1967; 18: 181–223
  • Rozental R, Srinivas M, Spray DC. How to close a gap junction channel. Efficacies and potencies of uncoupling agents. Methods Mol Biol 2001; 154: 447–476
  • Sabatini PJ, Zhang M, Silverman-Gavrila R, Bendeck MP, Langille BL. Homotypic and endothelial cell adhesions via N-cadherin determine polarity and regulate migration of vascular smooth muscle cells. Circ Res 2008; 103: 405–412
  • Sagar GD, Larson DM. Carbenoxolone inhibits junctional transfer and upregulates connexin43 expression by a protein kinase A–dependent pathway. J Cell Biochem 2006; 98: 1543–1551
  • Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C. Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2 + signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 2008; 117: 1065–1074
  • Sandow SL, Bramich NJ, Bandi HP, Rummery NM, Hill CE. Structure, function, and endothelium-derived hyperpolarizing factor in the caudal artery of the SHR and WKY rat. Arterioscler Thromb Vasc Biol 2003; 23: 822–828
  • Sandow SL, Garland CJ. Spatial association of K-Ca and gap junction connexins in rat mesenteric artery. FASEB J 2006; 20: A275
  • Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F. What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 2008; 36: 67–76
  • Sandow SL, Hill CE. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 2000; 86: 341–346
  • Sandow SL, Looft-Wilson R, Doran B, Grayson TH, Segal SS, Hill CE. Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovasc Res 2003; 60: 643–653
  • Sandow SL, Neylon CB, Chen MX, Garland CJ. Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (K(Ca)) and connexins: possible relationship to vasodilator function?. J Anat 2006; 209: 689–698
  • Sato T, Haimovici R, Kao R, Li AF, Roy S. Downregulation of connexin43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 2002; 51: 1565–1571
  • Segal SS, Beny JL. Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol 1992; 263: H1–H7
  • Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, Matsushita T, Kaba R, Halliday D. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech 2001; 52: 301–322
  • Siegl D, Koeppen M, Wolfle SE, Pohl U, de Wit C. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 2005; 97: 781–788
  • Simionescu, M, Simonescu, N. (1984). Ultrastructure of the microvascular wall: functional correlations. In:. Handbook of Physiology: The Cardiovascular System (p 41–101). American Physiological Society. BethesdaMaryland, USA: 1984.
  • Simon AM, McWhorter AR. Decreased intercellular dye-transfer and downregulation of nonablated connexins in aortic endothelium deficient in connexin37 or connexin40. J Cell Sci 2003; 116: 2223–2236
  • Smith P, Heath D, Padula F. Evagination of smooth muscle cells in the hypoxic pulmonary trunk. Thorax 1978; 33: 31–42
  • Sokoya EM, Burns AR, Marrelli SP, Chen J. Myoendothelial gap junction frequency does not account for sex differences in EDHF responses in rat MCA. Microvasc Res 2007; 74: 39–44
  • Sosa-Melgarejo JA, Berry CL. Myoendothelial contacts in the human fetal aorta. Arch Med Res 1995; 26: 431–435
  • Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, Lampe PD. The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J 2007; 408: 375–385
  • Taugner R, Kirchheim H, Forssmann WG. Myoendothelial contacts in glomerular arterioles and in renal interlobular arteries of rat, mouse, and Tupaia belangeri. Cell Tissue Res 1984; 235: 319–325
  • Tian J, Xie ZJ. The Na-K-ATPase and calcium-signaling microdomains. Physiology (Bethesda) 2008; 23: 205–211
  • Tolsa JF, Marino M, Peyter AC, Beny JL. Role of membrane potential in endothelium-dependent relaxation of isolated mouse main pulmonary artery. J Cardiovasc Pharmacol 2006; 47: 501–507
  • van Kempen MJ, Jongsma HJ. Distribution of connexin37, connexin40, and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 1999; 112: 479–486
  • Varon C, Tatin F, Moreau V, Van Obberghen-Schilling E, Fernandez-Sauze S, Reuzeau E, Kramer I, Genot E. Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 2006; 26: 3582–3594
  • Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 2005; 97: 908–915
  • Wei CJ, Francis R, Xu X, Lo CW. Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J Biol Chem 2005; 280: 19925–19936
  • Welsh DG, Segal SS. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 1998; 274: H178–H186
  • Welsh DG, Segal SS. Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo. Am J Physiol Heart Circ Physiol 2000; 278: H1832–H1839
  • Weston AH, Absi M, Ward DT, Ohanian J, Dodd RH, Dauban P, Petrel C, Ruat M, Edwards G. Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circ Res 2005; 97: 391–398
  • Wigg SJ, Tare M, Tonta MA, O'Brien RC, Meredith IT, Parkington HC. Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Am J Physiol Heart Circ Physiol 2001; 281: H232–H240
  • Xia J, Duling BR. Electromechanical coupling and the conducted vasomotor response. Am J Physiol 1995; 269: H2022–H2030
  • Xia J, Duling BR. Patterns of excitation-contraction coupling in arterioles: dependence on time and concentration. Am J Physiol 1998; 274: H323–H330
  • Xia J, Little TL, Duling BR. Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am J Physiol 1995; 269: H2031–H2038
  • Yao J, Hiramatsu N, Zhu Y, Morioka T, Takeda M, Oite T, Kitamura M. Nitric oxide–mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells. J Am Soc Nephrol 2005; 16: 58–67
  • Yashiro Y, Duling BR. Integrated Ca(2 + ) signaling between smooth muscle and endothelium of resistance vessels. Circ Res 2000; 87: 1048–1054
  • Ye C, Chattopadhyay N, Brown EM, Vassilev PM. Defective extracellular calcium (Ca(o))-sensing receptor (CaR)-mediated stimulation of a Ca(2 + )-activated potassium channel in glioblastoma cells transfected with a dominant negative CaR. Brain Res Mol Brain Res 2000; 80: 177–187
  • Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM. Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone 2000; 27: 21–27

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.