1,779
Views
37
CrossRef citations to date
0
Altmetric
Review

Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: a systematic review

, , , , , , , & show all

References

  • Carr J, Shepherd R. The changing face of neurological rehabilitation. Rev Bras Fisioter. 2006;10(2):147–156. doi:10.1590/S1413-35552006000200003
  • WHO. International Classification of Functioning, Disability and Health. 1st ed. São Paulo: Edusp ed.; 2008.
  • Barker RN, Gill TJ, Brauer SG. ‘Factors contributing to upper limb recovery after stroke: A survey of stroke survivors in Queensland Australia’. Disabil Rehabil. 2007;29(13):981–989. doi:10.1080/09638280500243570
  • Barker RN, Brauer SG. Upper limb recovery after stroke: The stroke survivors' perspective. Disabil Rehabil. 2005;27(20):1213–1223. doi:10.1080/09638280500075717
  • Deutsch JE, Brettler A, Smith C, et al. Nintendo wii sports and wii fit game analysis, validation, and application to stroke rehabilitation. Top Stroke Rehabil. 2012;18(6):701–719. doi:10.1310/tsr1806-701
  • Keshner EA. Virtual reality and physical rehabilitation: A new toy or a new research and rehabilitation tool? J Neuroeng Rehabil. 2004;1:8. doi:10.1186/1743-0003-1-8
  • Saposnik G, Levin M. Virtual reality in stroke rehabilitation: A meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–1386. doi:10.1161/STROKEAHA.110.605451
  • Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane database Syst Rev. 2015;9(2):1–110. doi:10.1002/14651858.CD008349.pub2
  • Pompeu JE, Alonso TH, Masson IB, Maria S, Pompeu AA, Torriani-pasin C. The effects of virtual reality on stroke rehabilitation: A systematic review. Motricidade. 2014;10(4):111–122.
  • Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J Physiother. 2015;61(3):117–124. doi:10.1016/j.jphys.2015.05.017
  • Moreira MC, de Amorim Lima AM, Ferraz KM, Rodrigues MAB. Use of virtual reality in gait recovery among post stroke patients – A systematic literature review. Disabil Rehabil Assist Technol. 2013;8(5):357–362.10.3109/17483107.2012.749428
  • Pietrzak E, Cotea C, Pullman S. Using commercial video games for upper limb stroke rehabilitation: Is this the way of the future? Top Stroke Rehabil. 2014;21(2):152–162. doi:10.1519/JPT.0b013e3182abe76e
  • Laffont I, Bakhti K, Coroian F, et al. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med. 2014;57(8):543–551. doi:10.1016/j.rehab.2014.08.007
  • Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: A scoping review. J Neuroeng Rehabil. 2015;12(46):1–14. doi:10.1186/s12984-015-0035-3
  • Fu MJ, Knutson JS, Chae J. Stroke rehabilitation using virtual environments. Phys Med Rehabil Clin N Am. 2015;26(4):747–757. doi:10.1016/j.pmr.2015.06.001
  • Vargus-Adams JN, Majnemer A. International classification of functioning, disability and health (ICF) as a framework for change: Revolutionizing rehabilitation. J Child Neurol. 2014;29(8):1030–1035. doi:10.1177/0883073814533595
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–1012. doi:10.1016/j.jclinepi.2009.06.005
  • Shiwa SR, Costa LOP, Moser ADDL, Aguiar IDC, de Oliveira LVF. PEDro: A base de dados de evidências em fisioterapia [A Physical therapy evidence database]. Fisioter em Mov. 2011;24(3):523–533. doi:10.1590/S0103-51502011000300017
  • Maher CG, Sherrington C, Elkins M, Herbert RD, Moseley AM. Challenges for evidence-based physical therapy: Accessing and interpreting high-quality evidence on therapy. Phys Ther. 2004;84(7):644–654.
  • Choi JH, Han EY, Kim BR, et al. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med. 2014;38(4):485–493.10.5535/arm.2014.38.4.485
  • Zheng C, Liao W, Xia W. Effect of combined low-frequency repetitive transcranial magnetic stimulation and virtual reality training on upper limb function in subacute stroke: A double-blind randomized controlled trail. J Huazhong Univ Sci Technol. 2015;35(2):248–254. doi:10.1007/s11596-015-1419-0
  • Viana RT, Laurentino GEC, Souza RJP, et al. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation. 2014;34(3):437–446.
  • Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–425.10.1016/j.apmr.2014.10.019
  • Llorens R, Gil-Gomez J-A, Alcaniz M, Colomer C. Improvement in balance using a virtual reality-based stepping exercise: A randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–268. doi:10.1177/0269215514543333
  • Crosbie JH, Lennon S, McGoldrick MC, McNeill MDJ, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: A randomized controlled pilot study. Clin Rehabil. 2012;26(9):798–806. doi:10.1177/0269215511434575
  • Piron L, Turolla A, Agostini M, Zucconi CS, Ventura L. Motor learning principles for rehabilitation: A pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair. 2010;24(6):501–508. doi:10.1177/1545968310362672
  • Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: Randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23. doi:10.1177/1545968312449695
  • Kang Si Hyun, Kim D-K, Seo Kyung Mook, et al. A computerized visual perception rehabilitation programme with interactive computer interface using motion tracking technology – A randomized controlled, single-blinded, pilot clinical trial study. Clin Rehabil. 2009;23(5):434–444. doi:10.1177/0269215508101732
  • Piron L, Turolla A, Agostini M, et al. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41:1016–1020. doi:10.2340/16501977-0459
  • Yavuzer G, Senel A, Atay MB, Stam HJ. “Playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: A randomized controlled clinical trial. Eur J Phys Rehabil Med. 2008;44(3):237–244.
  • Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil. 2013;92(10):871–880. doi:10.1097/PHM.0b013e3182a38e40
  • Yin CW, Sien NY, Ying LA, Chung SFM, Tan D, Leng M. Virtual reality for upper extremity rehabilitation in early stroke: A pilot randomized controlled trial. Clin Rehabil. 2014;6:1–8. doi:10.1177/0269215514532851
  • Lee SJ, Chun MH. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch Phys Med Rehabil. 2014;95(3):431–438. doi:10.1016/j.apmr.2013.10.027
  • Thielbar KO, Lord TJ, Fischer HC, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11(171):1–11. doi:10.1186/1743-0003-11-171
  • Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: A double-blind, randomized controlled study. Am J Phys Med Rehabil. 2009;88(9):693–701. doi:10.1097/PHM.0b013e3181b33350
  • Yom C, Cho H-Y, Lee B. Effects of virtual reality-based ankle exercise on the dynamic balance, muscle tone, and gait of stroke patients. J Phys Ther Sci. 2015;27(3):845–849.10.1589/jpts.27.845
  • Shin J, Bog Park S, Ho Jang S. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92–98. doi:10.1016/j.compbiomed.2015.03.011
  • Barcala L, Grecco LAC, Colella F, Lucareli PRG, Salgado ASI, Oliveira CS. Visual biofeedback balance training using wii fit after stroke: A randomized controlled trial. J Phys Ther Sci. 2013;25(8):1027–1032.10.1589/jpts.25.1027
  • Yang YR, Tsai MP, Chuang TY, Sung WH, Wang RY. Virtual reality-based training improves community ambulation in individuals with stroke: A randomized controlled trial. Gait Posture. 2008;28(2):201–206. doi:10.1016/j.gaitpost.2007.11.007
  • Lee D, Lee M, Lee K, Song C, Lee D, Al ET. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: A randomized controlled trial. J Stroke Cerebrovasc Dis. 2014;23(6):1319–1326. doi:10.1016/j.jstrokecerebrovasdis.2013.11.006
  • Park Y, Lee C, Lee B. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke. J Exerc Rehabil. 2013;9(5):489–494.10.12965/jer.130066
  • Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: Preliminary data from a randomized controlled trial. Biomed Res Int. 2014;2014. doi:10.1155/2014/752128
  • Shin J-H, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: A usability test and two clinical experiments. J Neuroeng Rehabil. 2014;11:32. doi:10.1186/1743-0003-11-32
  • Byl N, Abrams G, Pitsch E, et al. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J Hand Ther. 2013;26(4):343–352. doi:10.1016/j.jht.2013.06.001
  • da Silva Cameirão M, Badia BI, Duarte E, Verschure P. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System. Restor Neurol Neurosci. 2011;29:287–298. doi:10.3233/RNN-2011-0599
  • Jang S, You S, Hallett M, et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: An experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005;86(11):2218–2223.10.1016/j.apmr.2005.04.015
  • Jung J, Yu J, Kang H. Effects of virtual reality treadmill training on balance and balance self-efficacy in stroke patients with a history of falling. J Phys Ther Sci. 2012;24(11):1133–1136.10.1589/jpts.24.1133
  • Kiper P, Piron L, Turolla A, Sto J, Tonin P. The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke Skutecznoœæ terapii w œrodowisku wirtualnym w pierwszych 12 miesi1cach po udarze mózgu. Neurol Neurochir Pol. 2011;45(5):436–444. doi:10.1016/S0028-3843(14)60311-X
  • Kwon J, Park M, Yoon I, Park S. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: A double-blind randomized clinical trial. NeuroRehabilitation. 2012;31(4):379–385.
  • Lam Y, Man D, Tam S, Weiss P. Virtual reality training for stroke rehabilitation. NeuroRehabilitation. 2006;21(3):245–253.
  • Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40:169–174. doi:10.1161/STROKEAHA.108.516328
  • Saposnik G, Mamdani M, Bayley M, et al. Clinical trial protocols Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): Rationale, design, and protocol of a pilot randomized clinical trial assessing the wii gaming system. Int J Stroke. 2010;5(February):47–51.
  • You S, Jang S, Kim Y, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: An experimenter-blind randomized study. Stroke. 2005;36:1166–1171. doi:10.1161/01.STR.0000162715.43417.91
  • Song YB, Chun MH, Kim W. The effect of virtual reality and tetra-ataxiometric posturography programs on stroke patients with impaired standing balance. Ann Rehabil Med. 2014;38(2):160–166.10.5535/arm.2014.38.2.160
  • Turolla A, Dam M, Ventura L, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: A prospective controlled trial. J Neuroeng Rehabil. 2013;10(1). doi:10.1186/1743-0003-10-85
  • Kim BR, Chun MH, Kim LS, Park JY. Effect of virtual reality on cognition in stroke patients. Ann Rehabil Med. 2011;35:450–459.10.5535/arm.2011.35.4.450
  • Rajaratnam BS, Kaien JG, Jialin KL, et al. Does the inclusion of virtual reality games within conventional rehabilitation enhance balance retraining after a recent episode of stroke? Rehabil Res Pract. 2013;2013:1–6.
  • Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements using video games: A comparison with traditional therapy for stroke rehabilitation. Neurorehabil Neural Repair. 2014;28(8):733–739. doi:10.1177/1545968314521008
  • Jaffe D, Brown D, Pierson-Carey C, Buckley E, Lew H. Stepping over obstacles to improve walking in individuals with poststroke hemiplegia. J Rehabil Res Dev. 2004;41(3A):283–292.10.1682/JRRD.2004.03.0283
  • Yang S, Hwang W, Tsai Y, Liu F, Hsieh L, Chern J. Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil. 2011;90(12):969–978. doi:10.1097/PHM.0b013e3182389fae
  • Kim N, Park Y, Lee B. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke. J Phys Ther Sci. 2015;27(3):655–658.10.1589/jpts.27.655
  • Gamito P, Oliveira J, Coelho C, et al. Cognitive training on stroke patients via virtual reality-based serious games. Disabil Rehabil. 2015;2:1–4. doi:10.3109/09638288.2014.934925
  • Kim YJ, Ku J, Cho S, Kim HJ, Cho YK, Lim T. Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. J Neuroeng Rehabil. 2014;11(124):1–12.
  • Orihuela-Espina F, Fernández del Castillo I, Palafox L, et al. Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy. Top Stroke Rehabil. 2013;20(3). doi:10.1310/tsr2003-197
  • Kim E, Kang J, Park J, Jung B. Clinical feasibility of interactive commercial nintendo gaming for chronic stroke rehabilitation. J Phys Ther Sci. 2012;24(9):901–903.10.1589/jpts.24.901
  • Piron L, Tombolini P, Turolla A, et al. Reinforced feedback in virtual environment facilitates the arm motor recovery in patients after a recent stroke. Stud Heal Technol Inf. 2003;94:265–267. doi:10.1109/ICVR.2007.4362151
  • McEwen D, Taillon-Hobson A, Bilodeau M, Sveistrup H, Finestone H. Virtual reality exercise improves mobility after stroke: An inpatient randomized controlled trial. Stroke. 2014;45:1853–1855. doi:10.1161/STROKEAHA.114.005362
  • Kim YM, Chun MH, Yun GJ, Song YJ, Young HE. The effect of virtual reality training on unilateral spatial neglect in stroke patients. Ann Rehabil Med. 2011;35:309–315. doi:10.5535/arm.2011.35.3.309
  • Paquin K, Ali S, Carr K, Crawley J, McGowan C, Horton S. Effectiveness of commercial video gaming on fine motor control in chronic stroke within community-level rehabilitation. Disabil Rehabil. 2015;37(23):2184–2191. doi:10.3109/09638288.2014.1002574
  • Tsoupikova D, Stoykov N, Corrigan M, et al. Virtual immersion for post-stroke hand rehabilitation therapy. Ann Biomed Eng. 2015;43(2):467–477.10.1007/s10439-014-1218-y
  • Singh D, Nordin N, Aziz N, Lim B, Soh L. Effects of substituting a portion of standard physiotherapy time with virtual reality games among community-dwelling stroke survivors. BMC Neurol. 2013;13:1–7.
  • Mao Y, Chen P, Li L, Huang D. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res. 2014;9:1–7. doi:10.3969/j.issn.1673-5374.2013.31.003
  • Gordon NF, Gulanick M, Costa F, et al. Physical activity and exercise recommendations for stroke survivors: An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Circulation. 2004;109(16):2031–2041. doi:10.1161/01.CIR.0000126280.65777.A4
  • Veerbeek JM, Van Wegen E, Van Peppen R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2). doi:10.1371/journal.pone.0087987
  • Winstein CJ, Kay DB. Translating the science into pratice: Shaping rehabilitation pratice to enhance recovery after brain damage. In: Sensorimotor Rehabilitation: At the Crossroads of Basic and Clinical Sciences, vol. 218, 1st ed. Elsevier BV; 2015: 331–360. doi:10.1016/bs.pbr.2015.01.004
  • Luque-Moreno C, Ferragut-Garcías A, Rodríguez-Blanco C, et al. A decade of progress using virtual reality for poststroke lower extremity rehabilitation: Systematic review of the intervention methods. Biomed Res Int. 2015;2015:1–7. doi:10.1155/2015/342529
  • de Bruijn MA, Synhaeve NE, van Rijsbergen MW, de Leeuw F-E, Jansen BPW, de Kort PLM. Long-term cognitive outcome of ischaemic stroke in young adults. Cerebrovasc Dis. 2014;37(5):376–381. doi:10.1159/000362592
  • WHO. International Classification of Functioning, Disability and Health (ICF). New York: World Health Organization (WHO); 2001.
  • Weisfeld N, English RA, Claiborne AB. Envisioning a Transformed Clinical Trials Enterprise in the United States. Washington, DC: National Academies Press; 2012.
  • Patient-Centered Outcomes Research Institute. Patient-Centered Approach.
  • Barker RN, Brauer S, Carson R. Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Exp Brain Res. 2009;196(4):483–496. doi:10.1007/s00221-009-1872-8
  • Kwakkel G, Kollen BJ. Predicting activities after stroke: What is clinically relevant? Int J Stroke. 2013;8(1):25–32. doi:10.1111/j.1747-4949.2012.00967.x
  • Veerbeek JM, Koolstra M, Ket JC, van Wegen EE, Kwakkel G. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: A meta-analysis. Stroke. 2011;42(11):3311–3315. doi:10.1161/STROKEAHA.111.623819
  • Rizzo AS, Lange B, Suma EA, Bolas M. Virtual reality and interactive digital game technology: New tools to address obesity and diabetes. J Diabetes Sci Technol. 2011;5(2):256–264. doi:10.1177/193229681100500209
  • Gil-Gómez J-A, Lloréns R, Alcañiz M, Colomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: A pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil. 2011;8(1):1–30. doi:10.1186/1743-0003-8-30
  • Prange GB, Kottink AIR, Buurke JH, et al. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: A randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):174–182. doi:10.1177/1545968314535985
  • Subramaniam S, Wan-Ying Hui-Chan C, Bhatt T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther. 2014;38(4):216–225. doi:10.1097/NPT.0000000000000056
  • Scherer MJ, Dicowden MA. Organizing future research and intervention efforts on the impact and effects of gender differences on disability and rehabilitation: The usefulness of the International Classification of Functioning, Disability and Health (ICF). Disabil Rehabil. 2008;30(3):161–165. doi:10.1080/09638280701532292
  • Huber JG, Sillick J, Skarakis-Doyle E. Personal perception and personal factors: Incorporating health-related quality of life into the International Classification of Functioning, Disability and Health. Disabil Rehabil. 2010;32(23):1955–1965. doi:10.3109/09638281003797414
  • Schneidert M, Hurst R, Miller J, Üstün B. The role of environment in the international classification of functioning, disability and health (ICF). Disabil Rehabil. 2003;25(11-12):588–595. doi:10.1080/0963828031000137090
  • Üstün TB, Chatterji S, Bickenbach J, Kostanjsek N, Schneider M. The International Classification of Functioning, Disability and Health: A new tool for understanding disability and health. Disabil Rehabil. 2003;25(11–12):565–571. doi:10.1080/0963828031000137063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.