404
Views
7
CrossRef citations to date
0
Altmetric
Articles

A narrative review of gait training after stroke and a proposal for developing a novel gait training device that provides minimal assistance

Pages 375-383 | Received 19 Sep 2017, Accepted 15 Apr 2018, Published online: 02 May 2018

References

  • Lloyd-Jones D, Adams R, Brown T, Carnethon M, Dai S, De Simone G. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: Heart disease and stroke statistics–2010 update: A report from the American Heart Association. Med Eng Phys. 2010;121(7):948–954.
  • Kelly-Hayes M, Beiser A, Kase C, Scaramucci A, D’Agostino R, Wolf P. The influence of gender and age on disability following ischemic stroke: The Framingham study* 1. J Stroke nd Cerebrov Dis. 2003;12(3):119–126.10.1016/S1052-3057(03)00042-9
  • Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J NeuroEng Rehabil. 2009;6:18.10.1186/1743-0003-6-18
  • Mauritz KH. Gait training in hemiplegia. Eur J Neurol. 2002;9(s1):23–29; dicussion 53–61.10.1046/j.1468-1331.2002.0090s1023.x
  • Mauritz KH. Gait training in hemiparetic stroke patients. Eura Medicophys. 2004;40(3):165–178.
  • Ada L, Dean CM, Morris ME. Supported treadmill training to establish walking in non-ambulatory patients early after stroke. BMC Neurol. 2007;7:31.10.1186/1471-2377-7-29
  • Ada L, Dean CM, Morris ME, Simpson JM, Katrak P. Randomized trial of treadmill walking with body weight support to establish walking in subacute stroke: The mobilise trial. Stroke. 2010;41(6):1237–1242.10.1161/STROKEAHA.109.569483
  • Plummer P, Behrman AL, Duncan PW, et al. Effects of stroke severity and training duration on locomotor recovery after stroke: A pilot study. Neurorehabil Neural Rep. 2007;21(2):137–151.10.1177/1545968306295559
  • Fisher BE, Sullivan kJ. Activity-dependent factors affecting poststroke functional outcomes. Top Stroke Rehabil. 2001;8(3):31–44.10.1310/B3JD-NML4-V1FB-5YHG
  • Winstein CJ, Rose DK, Tan SM, Lewthwaite R, Chui HC, Azen SP. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: A pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil. 2004;85(4):620–628.10.1016/j.apmr.2003.06.027
  • Wolf SL, Thompson PA, Morris DM, et al. The EXCITE trial: Attributes of the wolf motor function test in patients with subacute stroke. Neurorehabil Neural Rep. 2005;19(3):194–205.10.1177/1545968305276663
  • Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: Evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–189.10.1002/oti.v16:3/4
  • Winstein C, Wolf S. Task-oriented training to promote upper extremity recovery. In: Stein J, Harvey RL, Macko RF, Winstein CJ, Zorowitz RD, editors. Stroke Recovery & Rehabilitation. New York, NY: Demos Medical; 2008. p. 267–290.
  • Jang SH, Kim YH, Cho SH, Lee JH, Park JW, Kwon YH. Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. NeuroReport. 2003;14(1):137–141.10.1097/00001756-200301200-00025
  • Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: A systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3–11.10.1016/j.neuropsychologia.2007.08.013
  • Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.10.1310/BQM5-6YGB-MVJ5-WVCR
  • Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;11:CD010820.
  • Rensink M, Schuurmans M, Lindeman E, Hafsteinsdóttir T. Task-oriented training in rehabilitation after stroke: Systematic review. J Adv Nurs. 2009;65(4):737–754.10.1111/jan.2009.65.issue-4
  • Rodriquez AA, Black PO, Kile KA, et al. Gait training efficacy using a home-based practice model in chronic hemiplegia. Arch Phys Med Rehabil. 1996;77(8):801–805.10.1016/S0003-9993(96)90260-9
  • Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Rep. 2007;21(4):307–314.10.1177/1545968307300697
  • McCain kJ, Pollo FE, Baum BS, Coleman SC, Baker S, Smith PS. Locomotor treadmill training with partial body-weight support before overground gait in adults with acute stroke: A pilot study. Arch Phys Med Rehabil. 2008;89(4):684–691.10.1016/j.apmr.2007.09.050
  • Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: Brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Rep. 2009;23(7):641–656.10.1177/1545968309336661
  • Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke. 2008;39(6):1786–1792.10.1161/STROKEAHA.107.504779
  • Rockefeller K. Using technology to promote safe patient handling and rehabilitation. Rehabil Nurs. 2008;33(1):3–9.10.1002/rnj.2008.33.issue-1
  • DePaul VG, Wishart LR, Richardson J, Lee TD, Thabane L. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: A randomized controlled trial protocol. BMC Neurol. 2011;11:27.10.1186/1471-2377-11-129
  • Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clin Rehabil. 2004;18(8):833–862.10.1191/0269215504cr843oa
  • Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25(3):341–344.10.1007/BF02447435
  • da Cunha IT Jr., Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: A randomized controlled pilot study. Arch Phys Med Rehabil. 2002;83(9):1258–1265.10.1053/apmr.2002.34267
  • Teixeira da Cunha Filho I, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001;38(2):245–255.
  • Wilson MS, Qureshy H, Protas EJ, Holmes SA, Krouskop TA, Sherwood AM. Equipment specifications for supported treadmill ambulation training. J Rehabil Res Dev. 2000;37(4):415–422.
  • Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–1465.10.1016/S0003-9993(03)00361-7
  • Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: A comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001;15(5):515–527.10.1191/026921501680425234
  • Sullivan kJ, Knowlton BJ, Dobkin BH. Step training with body weight support: Effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83(5):683–691.10.1053/apmr.2002.32488
  • Suputtitada A, Yooktanan P, Rarerng-Ying T. Effect of partial body weight support treadmill training in chronic stroke patients. J Med Assoc Thai. 2004;87(Suppl 2):S107–111.
  • Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–1128.10.1161/01.STR.29.6.1122
  • Werner C, Bardeleben A, Mauritz KH, Kirker S, Hesse S. Treadmill training with partial body weight support and physiotherapy in stroke patients: A preliminary comparison. Eur J Neurol. 2002;9(6):639–644.10.1046/j.1468-1331.2002.00492.x
  • Eich HJ, Mach H, Werner C, Hesse S. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: A randomized controlled trial. Clin Rehabil. 2004;18(6):640–651.10.1191/0269215504cr779oa
  • Peurala SH, Tarkka IM, Pitkänen K, Sivenius J. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 2005;86(8):1557–1564.10.1016/j.apmr.2005.02.005
  • Yen CL, Wang RY, Liao KK, Huang CC, Yang YR. Gait training—Induced change in corticomotor excitability in patients with chronic stroke. Neurorehabil Neural Rep. 2008;22(1):22–30.10.1177/1545968307301875
  • Wernig A, Müller S, Nanassy A, Cagol E. Laufband therapy based on‘rules of spinal locomotion’is effective in spinal cord injured persons. Eur J Neurosci. 1995;7(4):823–829.10.1111/ejn.1995.7.issue-4
  • Shumway-Cook M, Woollacott A. Motor Control: Theory and Practical Applications. Baltimore, MD: Williams & Wilkins; 1995.
  • Krakauer JW. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84.10.1097/01.wco.0000200544.29915.cc
  • Davis JZ. Task selection and enriched environments: A functional upper extremity training program for stroke survivors. Top Stroke Rehabil. 2006;13(3):1–11.10.1310/D91V-2NEY-6FL5-26Y2
  • Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: Evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–189.10.1002/oti.v16:3/4
  • Blennerhassett J, Dite W. Additional task-related practice improves mobility and upper limb function early after stroke: A randomised controlled trial. Aust J Physiother. 2004;50(4):219–224.10.1016/S0004-9514(14)60111-2
  • Byl NN, Pitsch EA, Abrams GM. Functional outcomes can vary by dose: Learning-based sensorimotor training for patients stable poststroke. Neurorehabil Neural Rep. 2008;22(5):494.10.1177/1545968308317431
  • Hornby TG, Straube DS, Kinnaird CR, et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011;18(4):293–307.10.1310/tsr1804-293
  • Shea CH, Kohl RM. Composition of practice: Influence on the retention of motor skills. Res Q Exercise Sport. 1991;62(2):187–195.10.1080/02701367.1991.10608709
  • Krakauer JW. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.10.1097/01.wco.0000200544.29915.cc
  • Bogey R, Hornby GT. Gait training strategies utilized in poststroke rehabilitation: Are we really making a difference? Top Stroke Rehabil. 2007;14(6):1–8.10.1310/tsr1406-1
  • Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.
  • Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: First experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–394.10.1109/TNSRE.2005.848628
  • Veneman J, Kruidhof R, Hekman E, Ekkelenkamp R, Van Asseldonk E, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–386.10.1109/TNSRE.2007.903919
  • Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Injury: [BI]. 2008;22(7–8):625–632.10.1080/02699050801941771
  • Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J NeuroEng Rehabil. 2010;7(1):30.10.1186/1743-0003-7-30
  • Stauffer Y, Allemand Y, Bouri M, et al. The WalkTrainer–a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):38–45.10.1109/TNSRE.2008.2008288
  • Schwartz I, Sajin A, Fisher I, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: A randomized controlled trial. PM&R. 2009;1(6):516–523.
  • Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.10.1177/0269215506071281
  • Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke. 2007;38(2):349–354.10.1161/01.STR.0000254607.48765.cb
  • Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Rep. 2009;23(1):5–13.10.1177/1545968308326632
  • Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training in patients with parkinson disease: A randomized controlled trial. Neurorehabil Neural Rep. 2012;26(4):353–361.
  • Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J. Robot-assisted gait training in multiple sclerosis: A pilot randomized trial. Mult Scler J. 2008;14(2):231–236.10.1177/1352458507082358
  • Vaney C, Gattlen B, Lugon-Moulin V, et al. Robotic-assisted step training (Lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil Neural Rep. 2012;26(3):212–221.10.1177/1545968311425923
  • Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Rep. 2008;22(6):661–671.10.1177/1545968308318473
  • Schwartz I, Sajin A, Moreh E, et al. Robot-assisted gait training in multiple sclerosis patients: A randomized trial. Mult Scler J. 2011;18(6):881–890.
  • Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: A subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89(8):829–839.10.2522/ptj.20080180
  • Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabilitation and neural repair. 2012;26(4):308–317.
  • Wernig A. “Ineffectiveness” of automated locomotor training. Arch Phys Med Rehabil. 2005;86(12):2385–2386. author reply 2386–2387.10.1016/j.apmr.2005.10.009
  • Lavrov I, Courtine G, Dy CJ, et al. Facilitation of stepping with epidural stimulation in spinal rats: Role of sensory input. J Neurosci Off J Soc Neurosci. 2008;28(31):7774–7780.10.1523/JNEUROSCI.1069-08.2008
  • Timoszyk WK, Nessler JA, Acosta C, et al. Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Res. 2005;1050(1–2):180–189.10.1016/j.brainres.2005.05.041
  • Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci Off J Soc Neurosci. 2006;26(41):10564–10568.10.1523/JNEUROSCI.2266-06.2006
  • Shah PK, Gerasimenko Y, Shyu A, et al. Variability in step training enhances locomotor recovery after a spinal cord injury. Eur J Neurosci. 2012;36(1):2054–2062.10.1111/ejn.2012.36.issue-1
  • Ziegler MD, Zhong H, Roy RR, Edgerton VR. Why Variability Facilitates Spinal Learning. J Neurosci Off J Soc Neurosci. 2010;30(32):10720–10726.10.1523/JNEUROSCI.1938-10.2010
  • Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol. 1992;67(5):1031–1056.10.1152/jn.1992.67.5.1031
  • Lynch D, Ferraro M, Krol J, Trudell CM, Christos P, Volpe BT. Continuous passive motion improves shoulder joint integrity following stroke. Clin Rehabil. 2005;19(6):594–599.10.1191/0269215505cr901oa
  • Hummelsheim H, Maier-Loth ML, Eickhof C. The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients. Scand J Rehabil Med. 1997;29(1):3–10.
  • LaMotte RH, Mountcastle VB. Disorders in somesthesis following lesions of parietal lobe. J Neurophysiol. 1979;42(2):400–419.10.1152/jn.1979.42.2.400
  • Sainburg RL, Poizner H, Ghez C. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993;70(5):2136–2147.10.1152/jn.1993.70.5.2136
  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73(2):820–835.10.1152/jn.1995.73.2.820
  • Lackner JR, DiZio P, Jeka J, Horak F, Krebs D, Rabin E. Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss. Exp Brain Res. 1999;126(4):459–466.10.1007/s002210050753
  • Jenkins WM, Merzenich MM. Reorganization of neocortical representations after brain injury: A neurophysiological model of the bases of recovery from stroke. Prog Brain Res. 1987;71:249–266.10.1016/S0079-6123(08)61829-4
  • Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol. 1998;79(4):2119–2148.10.1152/jn.1998.79.4.2119
  • Thielman G. Rehabilitation of reaching poststroke: A randomized pilot investigation of tactile versus auditory feedback for trunk control. J Neurol Phys Ther: JNPT. 2010;34(3):138–144.10.1097/NPT.0b013e3181efa1e8
  • Cirstea MC, Ptito A, Levin MF. Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Exp Brain Res. 2003;152(4):476–488.10.1007/s00221-003-1568-4
  • Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke. 2006;37(1):186–192.10.1161/01.STR.0000196940.20446.c9
  • Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: Role of use versus learning. Neurobiol Learn Memory. 2000;74(1):27–55.10.1006/nlme.1999.3934
  • Tyc F, Boyadjian A. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. Rev Neurosci. 2006;17(5):469–495.
  • Chang SM, Rincon D. Biofeedback controlled ankle foot orthosis for stroke rehabilitation to improve gait symmetry. Florida Conf Recent Adv Robotics. 2006;2006:1–5.
  • Trombly CA. Occupational Therapy for Dysfunction. 4th ed. Baltimore, MD: Williams and Wilkins; 1995.
  • Emken JL, Benitez R, Reinkensmeyer DJ. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J NeuroEng Rehabil. 2007;4:8.10.1186/1743-0003-4-8
  • Chen W, Cui X, Zhang J, Wang J. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training. Rev Sci Instrum. 2015;86(6):065109.10.1063/1.4923089
  • Keller U, Rauter G, Riener R. Assist-as-needed path control for the PASCAL rehabilitation robot. IEEE Int Conf Rehabi Robotics: [proceedings]. 2013;2013:6650475.
  • Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of three-dimensional, assist-as-needed robotic Arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil/Assoc Acad Physiatrists. 2012;91(11 Suppl 3):S232–S241.10.1097/PHM.0b013e31826bce79
  • Carmichael MG, Liu D. A task description model for robotic rehabilitation. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2012;2012:3086–3089.
  • Carmichael MG, Liu D. Experimental evaluation of a model-based assistance-as-needed paradigm using an assistive robot. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2013;2013:866–869.
  • Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):286–297.10.1109/TNSRE.2008.918389
  • Hussain S, Xie SQ, Jamwal PK. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern. 2013;43(3):1025–1034.10.1109/TSMCB.2012.2222374
  • van Dijk W, van der Kooij H, Koopman B, van Asseldonk EH, van der Kooij H. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. IEEE Int Conf Rehabil Robotics [Proc]. 2013;2013:6650393.
  • Cao J, Xie SQ, Das R, Zhu GL. Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Med Eng Physics. 2014;36(12):1555–1566.10.1016/j.medengphy.2014.08.005
  • Srivastava S, Kao PC, Kim SH, et al. Assist-as-needed robot-aided gait training improves walking function in individuals following stroke. IEEE Trans Neural Syst Rehabil Eng. 2015;23(6):956–963.10.1109/TNSRE.2014.2360822
  • Timmermans AA, Spooren AI, Kingma H, Seelen HA. Influence of task-oriented training content on skilled arm-hand performance in stroke: A systematic review. Neurorehabil Neural Repair. 2010;24(9):858–870.10.1177/1545968310368963
  • Williams G, Kahn M, Randall A. Strength training for walking in neurologic rehabilitation is not task specific: A focused review. Am J Phys Med Rehabil. 2014;93(6):511–522.10.1097/PHM.0000000000000058
  • Brunner I, Skouen JS, Hofstad H, et al. Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke? An analysis of treatment intensity and content. BMC Neurol. 2016;16(1):S225.10.1186/s12883-016-0740-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.