551
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of two different robot-assisted arm training on upper limb motor function and kinematics in chronic stroke survivors: A randomized controlled trial

ORCID Icon & ORCID Icon
Pages 241-250 | Received 03 Mar 2020, Accepted 29 Jul 2020, Published online: 13 Aug 2020

References

  • Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Stroke. Neurologic and functional recovery the Copenhagen Stroke study. Phys Med Rehabil Clin N Am. 1999;10(4):887–906. doi:10.1016/S1047-9651(18)30169-4.
  • Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22:281–299.
  • Sousa Nanji L, Torres Cardoso A, Costa J, Vaz-Carneiro A. Analysis of the cochrane review: interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;11:CD010820. Acta Med Port, 2015. 28(5): p. 551–3.
  • Hsieh YW, Lin KC, Wu CY, Shih TY, Li MW, Chen CL. Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial. Sci Rep. 2018;8(1):2091. doi:10.1038/s41598-018-20330-3.
  • Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16(6):705–710. doi:10.1097/00019052-200312000-00010.
  • Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015;(11):CD006876. doi: 10.1002/14651858.CD006876.pub4.
  • Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–121. doi:10.1177/1545968307305457.
  • Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–184. doi:10.1682/JRRD.2005.04.0076.
  • Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;(11). doi:10.1002/14651858.CD010820.pub2.
  • Duret C, Grosmaire AG, Krebs HI. Robot-assisted therapy in upper extremity hemiparesis: overview of an evidence-based approach. Front Neurol. 2019;10:412. doi:10.3389/fneur.2019.00412.
  • Birkenmeier RL, Prager EM, Lang CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24(7):620–635. doi:10.1177/1545968310361957.
  • Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014;68(4):444–453. doi:10.5014/ajot.2014.011619.
  • Carey JR, Durfee WK, Bhatt E, et al. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair. 2007;21(3):216–232. doi:10.1177/1545968306292381.
  • Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2012;26(8):696–704. doi:10.1177/0269215511431473.
  • Hsieh YW, Wu CY, Liao WW, Lin KC, Wu KY, Lee CY. Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabil Neural Repair. 2011;25(6):503–511. doi:10.1177/1545968310394871.
  • Masiero S, Poli P, Rosati G, et al. The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices. 2014;11(2):187–198. doi:10.1586/17434440.2014.882766.
  • Zollo L, Accoto D, Torchiani F, Formica D, Guglielmelli E. Design of a planar robotic machine for neuro-rehabilitation. IEEE Int Conf Robot Autom. 2008;2031–2036. doi:10.1109/ROBOT.2008.4543505
  • Nordin N, Xie SQ, Wünsche B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014;11(1):137. doi:10.1186/1743-0003-11-137.
  • Cho KH, Song WK. Robot-assisted reach training for improving upper extremity function of chronic stroke. Tohoku J Exp Med. 2015;237(2):149–155. doi:10.1620/tjem.237.149.
  • Cho KH, Song WK. Robot-assisted reach training with an active assistant protocol for long-term upper extremity impairment poststroke: a randomized controlled trial. Arch Phys Med Rehabil. 2019;100(2):213–219. doi:10.1016/j.apmr.2018.10.002.
  • Song WK, Kim Y, Jung JY. Usability testing of 2D and 3D displays in an immersive upper extremity exercise testbed. 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju,  South Korea; 2013, pp. 1439–1443.
  • Cooper RA, Ohnabe H, Hobson DA. An Introduction to Rehabilitation Engineering. CRC Press, Florida; 2006.
  • http://robosklep.com/en/
  • Page SJ, Levine P, Hade E. Psychometric properties and administration of the wrist/hand subscales of the Fugl-Meyer assessment in minimally impaired upper extremity hemiparesis in stroke. Arch Phys Med Rehabil. 2012;93(12):2373–2376. doi:10.1016/j.apmr.2012.06.017.
  • Desrosiers J, Bravo G, Hébert R, Dutil E, Mercier L. Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75(7):751–755. doi:10.1016/0003-9993(94)90130-9.
  • Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. doi:10.1177/1545968307305353.
  • Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;(9). doi:10.1002/14651858.CD006876.pub5.
  • Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–1569. doi:10.1007/s10072-017-2995-5.
  • Cho JE, Yoo JS, Kim KE, et al. Systematic review of appropriate robotic intervention for gait function in subacute stroke patients. BioMed Res Int. 2018;2018:1–11. doi:10.1155/2018/4085298.
  • Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–169. doi:10.1161/STR.0000000000000098.
  • Conroy SS, Whitall J, Dipietro L, et al. Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. Arch Phys Med Rehabil. 2011;92(11):1754–1761. doi:10.1016/j.apmr.2011.06.016.
  • Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–1783. doi:10.1056/NEJMoa0911341.
  • Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798. doi:10.2522/ptj.20110009.
  • Lee SH, Park G, Cho DY, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep. 2020;10(1):1–8. doi:10.1038/s41598-019-56847-4.
  • Duret C, Courtial O, Grosmaire AG. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke. Restor Neurol Neurosci. 2016;34(2):237–245. doi:10.3233/RNN-150565.
  • van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28(1):4–12. doi:10.1177/1545968313498514.
  • Cirstea M, Mindy F. Compensatory strategies for reaching in stroke. Brain. 2000;123(5):940–953. doi:10.1093/brain/123.5.940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.