1,149
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Verbal feedback enhances motor learning during post-stroke gait retraining

ORCID Icon, , , , &
Pages 362-377 | Received 25 May 2020, Accepted 27 Aug 2020, Published online: 18 Sep 2020

References

  • Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics—2019 update: a report from the american heart association. Circulation. 2019;139(10).
  • Friedman PJ. Gait recovery after hemiplegic stroke. Int Disabil Stud. 1990;12(3):119–122. doi:10.3109/03790799009166265.
  • Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(1):27–32. doi:10.1016/S0003-9993(95)80038-7.
  • Wade DT, Wood VA, Heller A, Maggs J, Langton Hewer R. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19:25–30.
  • Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: characteristics. Gait Posture. 1996;4(2):136–148. doi:10.1016/0966-6362(96)01063-6.
  • Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–56. doi:10.1016/j.gaitpost.2004.06.009.
  • Bowden MG, Embry AE, Perry LA, Duncan PW. Rehabilitation of walking after stroke. Curr Treat Options Neurol. 2012;14(6):521–530. doi:10.1007/s11940-012-0198-1.
  • Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017;24(5):394–403. doi:10.1080/10749357.2017.1282413.
  • Whitall J. Stroke rehabilitation research: time to answer more specific questions? Neurorehabil Neural Repair. 2004;18(1):3–8;author reply 9–11. doi:10.1177/0888439003262876.
  • Reber PJ, Squire LR. Encapsulation of implicit and explicit memory in sequence learning. J Cogn Neurosci. 1998;10(2):248–263. doi:10.1162/089892998562681.
  • Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. doi:10.1097/01.wco.0000200544.29915.cc.
  • Hanlon RE. Motor learning following unilateral stroke. Arch Phys Med Rehabil. 1996;77(8):811–815. doi:10.1016/S0003-9993(96)90262-2.
  • Winstein CJ, Merians AS, Sullivan KJ. Motor learning after unilateral brain damage. Neuropsychologia. 1999;37(8):975–987. doi:10.1016/S0028-3932(98)00145-6.
  • Boyd LA, Winstein CJ. Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Phys Ther. 2003;83(11):976–989. doi:10.1093/ptj/83.11.976.
  • Kesar TM, Sauer MJ, Binder-Macleod SA, Reisman DS. Motor learning during poststroke gait rehabilitation: A case study. J Neurol Phys Ther. 2014;38(3):183–189. doi:10.1097/NPT.0000000000000047.
  • Helm EE, Reisman DS. The split-belt walking paradigm: exploring motor learning and spatiotemporal asymmetry poststroke. Phys Med Rehabil Clin N Am. 2015;26(4):703–713. doi:10.1016/j.pmr.2015.06.010.
  • Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–633. doi:10.1097/WCO.0b013e328315a293.
  • Durham K, Van Vliet PM, Badger F, Sackley C. Use of information feedback and attentional focus of feedback in treating the person with a hemiplegic arm. Physiother Res Int. 2009;14(2):77–90. doi:10.1002/pri.431.
  • Maier M, Ballester BR, Verschure P. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019;13:74.
  • Kal E, van den Brink H, Houdijk H, et al. How physical therapists instruct patients with stroke: an observational study on attentional focus during gait rehabilitation after stroke. Disabil Rehabil. 2017;40(10):1154–1165. doi:10.1080/09638288.2017.1290697.
  • Johnson L, Burridge JH, Demain SH. Internal and external focus of attention during gait re-education: an observational study of physical therapist practice in stroke rehabilitation. Phys Ther. 2013;93(7):957–966. doi:10.2522/ptj.20120300.
  • Magill R, Anderson D. Motor Learning and Control: Concepts and Applications. 11. New York, NY: McGraw-Hill Education; 2016.
  • van Vliet PM, Wulf G. Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil. 2006;28(13–14):831–840. doi:10.1080/09638280500534937.
  • Parry R. A video analysis of how physiotherapists communicate with patients about errors of performance: insights for practice and policy. Physiotherapy. 2005;91(4):204–214. doi:10.1016/j.physio.2005.05.004.
  • Day KA, Cherry-Allen KM, Bastian AJ. Individualized feedback to change multiple gait deficits in chronic stroke. J Neuroeng Rehabil. 2019; 16(1): doi: 10.1186/s12984-019-0635-4.
  • Talvitie U, Reunanen M. Interaction between physiotherapists and patients in stroke treatment. Physiotherapy. 2002;88(2):77–88. doi:10.1016/S0031-9406(05)60931-5.
  • Chiviacowsky S, Campos T, Domingues MR. Reduced frequency of knowledge of results enhances learning in persons with Parkinson’s disease. Front Psychol. 2010;1. doi:10.3389/fpsyg.2010.00226.
  • Jarus T. Is more always better? Optimal amounts of feedback in learning to calibrate sensory awareness. Occup Ther J Res. 1995;15(3):181–197. doi:10.1177/153944929501500303.
  • Park J-H, Shea CH, Wright DL. Reduced-frequency concurrent and terminal feedback: a test of the guidance hypothesis. J Mot Behav. 2000;32(3):287–296. doi:10.1080/00222890009601379.
  • Lai Q, Shea CH. Generalized motor program (GMP) learning: effects of reduced frequency of knowledge of results and practice variability. J Mot Behav. 1998;30(1):51–59. doi:10.1080/00222899809601322.
  • Weeks DL, Kordus RN. Relative frequency of knowledge of performance and motor skill learning. Res Q Exerc Sport. 1998;69(3):224–230. doi:10.1080/02701367.1998.10607689.
  • Wulf G, Schmidt RA, Deubel H. Reduced feedback frequency enhances generalized motor program learning but not parameterization learning. J Exp Psychol. 1993;19(5):1134–1150.
  • Salmoni AW, Schmidt RA, Walter CB. Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull. 1984;95(3):355–386. doi:10.1037/0033-2909.95.3.355.
  • Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Hum Factors. 1997;39(4):509–525. doi:10.1518/001872097778667979.
  • Rendos NK, Harriell K, Qazi S, Regis RC, Alipio TC, Signorile JF. Variations in verbal encouragement modify isokinetic performance. J Strength Cond Res. 2019;33(3):708–716. doi:10.1519/JSC.0000000000002998.
  • Halperin I, Pyne DB, Martin DT. Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform. 2015;10(7):823–829. doi:10.1123/ijspp.2014-0566.
  • Ardestani MM, Hornby TG. Effect of investigator observation on gait parameters in individuals with stroke. J Biomech. 2020;100:109602. doi:10.1016/j.jbiomech.2020.109602.
  • Hornby TG, Reisman DS, Ward IG, et al. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 2020;44(1):49–100. doi:10.1097/NPT.0000000000000303.
  • Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–931. doi:10.1177/1545968312440745.
  • Shea CH, Kohl RM. Composition of practice: influence on the retention of motor skills. Res Q Exerc Sport. 1991;62(2):187–195. doi:10.1080/02701367.1991.10608709.
  • Shea CH, Kohl RM. Specificity and variability of practice. Res Q Exerc Sport. 1990;61(2):169–177. doi:10.1080/02701367.1990.10608671.
  • Shea CH, Lai Q, Wright DL, Immink M, Black C. Consistent and variable practice conditions: effects on relative and absolute timing. J Mot Behav. 2001;33(2):139–152. doi:10.1080/00222890109603146.
  • Lage GM, Ugrinowitsch H, Apolinário-Souza T, Vieira MM, Albuquerque MR, Benda RN. Repetition and variation in motor practice: A review of neural correlates. Neurosci Biobehav Rev. 2015;57:132–141. doi:10.1016/j.neubiorev.2015.08.012.
  • Green S, Sherwood DE. The benefits of random variable practice for accuracy and temporal error detection in a rapid aiming task. Res Q Exerc Sport. 2000;71(4):398–402. doi:10.1080/02701367.2000.10608922.
  • Holleran CL, Straube DD, Kinnaird CR, Leddy AL, Hornby TG. Feasibility and potential efficacy of high-intensity stepping training in variable contexts in subacute and chronic stroke. Neurorehabil Neural Repair. 2014;28(7):643–651. doi:10.1177/1545968314521001.
  • Hornby TG, Holleran CL, Hennessy PW, et al. Variable intensive early walking poststroke (VIEWS): A randomized controlled trial. Neurorehabil Neural Repair. 2016;30(5):440–450. doi:10.1177/1545968315604396.
  • Hornby TG, Henderson CE, Plawecki A, et al. Contributions of stepping intensity and variability to mobility in individuals poststroke. Stroke. 2019;50(9):2492–2499. doi:10.1161/STROKEAHA.119.026254.
  • Holleran CL, Hennessey PW, Leddy AL, et al. High-intensity variable stepping training in patients with motor incomplete spinal cord injury: A case series. J Neurol Phys Ther. 2018;42(2):94–101. doi:10.1097/NPT.0000000000000217.
  • Rhea CK, Wutzke CJ, Lewek MD. Gait dynamics following variable and constant speed gait training in individuals with chronic stroke. Gait Posture. 2012;36(2):332–334. doi:10.1016/j.gaitpost.2012.03.014.
  • Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture. 2011;33(2):314–317. doi:10.1016/j.gaitpost.2010.11.024.
  • Kesar TM, Perumal R, Reisman DS, et al. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait. Stroke. 2009;40(12):3821–3827. doi:10.1161/STROKEAHA.109.560375.
  • Awad LN, Reisman DS, Kesar TM, Binder-Macleod SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil. 2014;95(5):840–848. doi:10.1016/j.apmr.2013.12.012.
  • Awad LN, Reisman DS, Pohlig RT, Binder-Macleod SA. Reducing the cost of transport and increasing walking distance after stroke: A randomized controlled trial on fast locomotor training combined with functional electrical stimulation. Neurorehabil Neural Repair. 2016;30(7):661–670. doi:10.1177/1545968315619696.
  • Kesar TM, Reisman DS, Higginson JS, Awad LN, Binder-Macleod SA. Changes in post-stroke gait biomechanics induced by one session of gait training. Phys Med Rehabil Int. 2015;2:10.
  • Allen JL, Ting LH, Kesar TM. Gait rehabilitation using functional electrical stimulation induces changes in ankle muscle coordination in stroke survivors: A preliminary study. Front Neurol. 2018;9. doi:10.3389/fneur.2018.01127.
  • Becker BJ. Synthesizing standardized mean-change measures. Br J Math Stat Psychol. 1988;41(2):257–278. doi:10.1111/j.2044-8317.1988.tb00901.x.
  • Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–566. doi:10.1038/s41592-019-0470-3.
  • Fox J, Garber P, Hoffman M, et al. Morphological characteristics of skeletal muscles in relation to gender. Aging Clin Exp Res. 2003;15(3):264–269. doi:10.1007/BF03324508.
  • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–1531.
  • Kesar T, Binder-Macleod S. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol. 2006;91(6):967–976. doi:10.1113/expphysiol.2006.033886.
  • Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–2407. doi:10.1007/s00421-011-2128-4.
  • Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358–364. doi:10.1093/ptj/85.4.358.
  • Xu T, Yu X, Perlik AJ, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009;462(7275):915–919. doi:10.1038/nature08389.
  • McDonnell MN, Buckley JD, Opie GM, Ridding MC, Semmler JG. A single bout of aerobic exercise promotes motor cortical neuroplasticity. J Appl Physiol (1985). 2013;114(9):1174–1182. doi:10.1152/japplphysiol.01378.2012.
  • Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–454. doi:10.1016/j.neuron.2011.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.