56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reduced oxygen desaturation in the vastus lateralis of chronic stroke survivors during graded muscle contractions

, , , , , & show all
Pages 513-526 | Received 01 Sep 2023, Accepted 02 Dec 2023, Published online: 14 Dec 2023

References

  • Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American heart association. Circulation. 2022;145(8):e153–e639. doi:10.1161/CIR.0000000000001052.
  • De Deyne PG, Hafer‐Macko CE, Ivey FM, Ryan AS, Macko RF. Muscle molecular phenotype after stroke is associated with gait speed. Muscle And Nerve. 2004;30(2):209–215. doi:10.1002/mus.20085.
  • Nadeau S, Gravel D, Arsenault AB, Bourbonnais D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech. 1999;14(2):125–135. doi:10.1016/S0268-0033(98)00062-X.
  • Suzuki K, Nakamura R, Yamada Y, Handa T. Determinants of maximum walking speed in hemiparetic stroke patients. Tohoku J Exp Med. 1990;162(4):337–344. doi:10.1620/tjem.162.337.
  • Jonkers I, Delp S, Patten C. Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture. 2009;29(1):129–137. doi:10.1016/j.gaitpost.2008.07.010.
  • Lindmark B, Hamrin E. Relation between gait speed, knee muscle torque and motor scores in post‐stroke patients. Scand J Caring Sci. 1995;9(4):195–202. doi:10.1111/j.1471-6712.1995.tb00414.x.
  • Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–248. doi:10.1016/S0004-9514(06)70003-4.
  • Landin S, Hagenfeldt L, Saltin B, Wahren J. Muscle Metabolism during Exercise in Hemiparetic Patients. Clin Sci Mol Med. 1977;53:257–269. doi:10.1042/cs0530257.
  • Slager UT, Hsu JD, Jordan C. Histochemical and morphometric changes in muscles of stroke patients. Clin Orthop Relat Res. 1985;199:159–168. doi:10.1097/00003086-198510000-00021.
  • Severinsen K, Dalgas U, Overgaard K, et al. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors. Muscle And Nerve. 2016;53(5):748–754. doi:10.1002/mus.24907.
  • English C, McLennan H, Thoirs K, Coates A, Bernhardt J. Loss of skeletal muscle mass after stroke: a systematic review. Int J Stroke. 2010;5(5):395–402. doi:10.1111/j.1747-4949.2010.00467.x.
  • Hunnicutt JL, Gregory CM. Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals. Top Stroke Rehabil. 2017;24(6):463–471. doi:10.1080/10749357.2017.1292720.
  • Durand MJ, Boerger TF, Nguyen JN, et al. Two weeks of ischemic conditioning improves walking speed and reduces neuromuscular fatigability in chronic stroke survivors. J Appl Physiol (1985). 2019;126(3):755–763. doi:10.1152/japplphysiol.00772.2018.
  • Hyngstrom AS, Murphy SA, Nguyen J, et al. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. J Appl Physiol (1985). 2018;124(5):1140–1147. doi:10.1152/japplphysiol.01072.2017.
  • Durand MJ, Murphy SA, Schaefer KK, et al. Impaired hyperemic response to exercise post stroke. Plos One. 2015;10(12):e0144023. doi:10.1371/journal.pone.0144023.
  • Murphy SA, Negro F, Farina D, et al. Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol. 2018;120(6):3246–3256. doi:10.1152/jn.00923.2017.
  • Murphy S, Durand M, Negro F, et al. The relationship between blood flow and motor unit firing rates in response to fatiguing exercise post-stroke. Front Physiol. 2019;10:545. doi:10.3389/fphys.2019.00545.
  • Hyngstrom AS, Nguyen JN, Uhrich TD, et al. Quantification of tissue oxygen saturation in the vastus lateralis muscle of chronic stroke survivors during a graded exercise test. Cardiopulm Phys Ther J. 2022;34(1):39–50. doi:10.1097/CPT.0000000000000208.
  • Cui W, Kumar C, Chance B Experimental study of migration depth for the photons measured at sample surface. Paper/Poster presented at: Photonics West - Lasers and Applications in Science and Engineering; 1991; Los Angeles, CA.
  • Earp JE, Gesick H, Angelino D, Adami A. Effects of isometric loading intensity on patellar tendon microvascular response. Scand J Med Sci Sports. 2022;32(8):1182–1191. doi:10.1111/sms.14175.
  • McNeil CJ, Allen MD, Olympico E, Shoemaker JK, Rice CL. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R475–481. doi:10.1152/ajpregu.00387.2014.
  • Muthalib M, Millet GY, Quaresima V, Nosaka K. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. J Biomed Opt. 2010;15(1):017008. doi:10.1117/1.3309746.
  • Soares RN, Reimer RA, Murias JM. Changes in vascular responsiveness during a hyperglycemia challenge measured by near-infrared spectroscopy vascular occlusion test. Microvasc Res. 2017;111:67–71. doi:10.1016/j.mvr.2017.01.003.
  • Cross TJ, Sabapathy S. The impact of venous occlusion per se on forearm muscle blood flow: implications for the near-infrared spectroscopy venous occlusion technique. Clin Physiol Funct Imaging. 2017;37(3):293–298. doi:10.1111/cpf.12301.
  • Boushel R, Pott F, Madsen P, et al. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans. Eur J Appl Physiol Occup Physiol. 1998;79(1):41–48. doi:10.1007/s004210050471.
  • Ahmadi S, Sinclair PJ, Foroughi N, Davis G. Monitoring muscle oxygenation after eccentric exercise-induced muscle damage using near-infrared spectroscopy. Appl Physiol Nutr Metab. 2008;33(4):743–752. doi:10.1139/h08-048.
  • Hicks A, McGill S, Hughson RL. Tissue oxygenation by near-infrared spectroscopy and muscle blood flow during isometric contractions of the forearm. Can J Appl Physiol. 1999;24(3):216–230. doi:10.1139/h99-018.
  • Nygren A, Rennerfelt K, Zhang Q. Detection of changes in muscle oxygen saturation in the human leg: a comparison of two near-infrared spectroscopy devices. J Clin Monit Comput. 2014;28(1):57–62. doi:10.1007/s10877-013-9494-x.
  • Esaki K, Hamaoka T, Rådegran G, et al. Association between regional quadriceps oxygenation and blood oxygen saturation during normoxic one-legged dynamic knee extension. Eur J Appl Physiol. 2005;95(4):361–370. doi:10.1007/s00421-005-0008-5.
  • De Ruiter C, De Boer M, Spanjaard M, De Haan A. Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. J Appl Physiol (1985). 2005;99(2):579–586. doi:10.1152/japplphysiol.01420.2004.
  • Miller M, Flansbjer U-B, Lexell J. Voluntary activation of the knee extensors in chronic poststroke subjects. Am J Phys Med Rehabil. 2009;88(4):286–291. doi:10.1097/PHM.0b013e318198b569.
  • Vøllestad NK, Wesche J, Sejersted OM. Gradual increase in leg oxygen uptake during repeated submaximal contractions in humans. J Appl Physiol (1985). 1990;68(3):1150–1156. doi:10.1152/jappl.1990.68.3.1150.
  • CJ DR, Boer D, Spanjaard M, de Haan A. Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. J Appl Physiol (1985). 2005;99(2):579–586. doi:10.1152/japplphysiol.01420.2004.
  • Kooistra RD, CJ DR, de Haan A. Knee angle-dependent oxygen consumption of human quadriceps muscles during maximal voluntary and electrically evoked contractions. Eur J Appl Physiol. 2008;102(2):233–242. doi:10.1007/s00421-007-0573-x.
  • Da Vies J, Mayston M, Newham D. Electrical and mechanical output of the knee muscles during isometric and isokinetic activity in stroke and healthy adults. Disabil Rehabil. 1996;18(2):83–90. doi:10.3109/09638289609166022.
  • Prado-Medeiros CL, Silva MP, Lessi GC, et al. Muscle atrophy and functional deficits of knee extensors and flexors in people with chronic stroke. Phys Ther. 2012;92(3):429–439. doi:10.2522/ptj.20090127.
  • Prior SJ, McKenzie MJ, Joseph LJ, et al. Reduced skeletal muscle capillarization and glucose intolerance. Microcirculation. 2009;16(3):203–212. doi:10.1080/10739680802502423.
  • Jakobsson F, Edström L, Grimby L, Thornell LE. Disuse of anterior tibial muscle during locomotion and increased proportion of type II fibres in hemiplegia. J Neurol Sci. 1991;105(1):49–56. doi:10.1016/0022-510x(91)90117-p.
  • De Deyne PG, Hafer-Macko CE, Ivey FM, Ryan AS, Macko RF. Muscle molecular phenotype after stroke is associated with gait speed. Muscle And Nerve. 2004;30(2):209–215. doi:10.1002/mus.20085.
  • Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review. Int J Stroke. 2012;7(6):499–510. doi:10.1111/j.1747-4949.2012.00791.x.
  • Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr., Wildenthal K, Chapman CB. Response to exercise after bed rest and after training. Circulation. 1968;38(5s7):Vii1–78. doi:10.1161/01.CIR.38.5S7.VII-1.
  • Kunkel D, Fitton C, Burnett M, Ashburn A. Physical inactivity post-stroke: a 3-year longitudinal study. Disabil Rehabil. 2015;37(4):304–310. doi:10.3109/09638288.2014.918190.
  • Tanaka S, Ito D, Kimura Y, et al. Relationship between longitudinal changes in skeletal muscle characteristics over time and functional recovery during intensive rehabilitation of patients with subacute stroke. Top Stroke Rehabil. 2022;29(5):356–365. doi:10.1080/10749357.2021.1940724.
  • Hornby TG, Henderson CE, Plawecki A, et al. Contributions of stepping intensity and variability to mobility in individuals poststroke. Stroke. 2019;50(9):2492–2499. doi:10.1161/strokeaha.119.026254.
  • Moore JL, Nordvik JE, Erichsen A, Rosseland I, E B, Hornby TG. Implementation of high-intensity stepping training during inpatient stroke rehabilitation improves functional outcomes. Stroke. 2020;51(2):563–570. doi:10.1161/STROKEAHA.119.027450.
  • Ryan AS, Buscemi A, Forrester L, Hafer-Macko CE, Ivey FM. Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil Neural Repair. 2011;25(9):865–872. doi:10.1177/1545968311408920.
  • Iversen E, Hassager C, Christiansen C. The effect of hemiplegia on bone mass and soft tissue body composition. J Acta Neurologica Scandinavica. 1989;79(2):155–159. doi:10.1111/j.1600-0404.1989.tb03729.x.
  • Jørgensen L, Jacobsen B. Changes in muscle mass, fat mass, and bone mineral content in the legs after stroke: a 1 year prospective study. Bone. 2001;28(6):655–659. doi:10.1016/S8756-3282(01)00434-3.
  • Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil. 2002;83(12):1703–1707. doi:10.1053/apmr.2002.36399.
  • Ryan TE, Brizendine JT, McCully KK. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. J Appl Physiol (1985). 2013;114(2):230–237. doi:10.1152/japplphysiol.01043.2012.
  • Ryan TE, Erickson ML, Brizendine JT, Young H-J, McCully KK. Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol (1985). 2012;113(2):175–183. doi:10.1152/japplphysiol.00319.2012.
  • Fadel PJ, Keller DM, Watanabe H, Raven PB, Thomas GD. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and doppler ultrasound. J Appl Physiol (1985). 2004;96(4):1323–1330. doi:10.1152/japplphysiol.01041.2003.
  • Cardinale M, Ferrari M, Quaresima V. Gastrocnemius medialis and vastus lateralis oxygenation during whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(4):694. doi:10.1249/mss.0b013e31803084d8.
  • Crenshaw AG, Bronee L, Krag I, Jensen BR. Oxygenation and EMG in the proximal and distal vastus lateralis during submaximal isometric knee extension. J Sports Sci. 2010;28(10):1057–1064. doi:10.1080/02640414.2010.489195.
  • Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin Rehabil. 2020;34(9):1173–1197. doi:10.1177/0269215520932964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.