108
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation

ORCID Icon, , , , & ORCID Icon

References

  • Raki L, Beaudoin J, Alizadeh R, Makar J, Sato T. Cement and concrete nanoscience and nanotechnology. Materials. 2010;3:918–42.10.3390/ma3020918
  • Lee J, Mahendra S, Alvarez PJJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 2010;4:3580–90.10.1021/nn100866w
  • Pacheco-Torgal F, Jalali S. Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater. 2011;25:582–90.10.1016/j.conbuildmat.2010.07.009
  • Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther. 2008;120:35–42.10.1016/j.pharmthera.2008.07.001
  • Yokel RA, MacPhail RC. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol. 2011;6(1):1–27.
  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health – lessons learned from four case studies. Environ Int. 2011;37:1143–56.10.1016/j.envint.2011.02.005
  • Kuempel ED, Geraci CL, Schulte PA. Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Ann Occup Hyg. 2012;56:491–505.
  • Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, et al. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Exp Sci Environ Epidemiol. 2011;21:450–63.10.1038/jes.2011.4
  • Hussein T, Wierzbicka A, Löndahl J, Lazaridis M, Hänninen O. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose. Atmos Environ. 2015;106:402–11.
  • Holmberg S, Yuguo L. Modelling of the indoor environment – particle dispersion and deposition. Indoor Air. 1998;8:113–22.10.1111/ina.1998.8.issue-2
  • Tian ZF, Tu JY, Yeoh GH. CFD studies of indoor airflow and contaminant particle transportation. Part Sci Technol. 2007;25:555–70.10.1080/02726350701492728
  • Chen C, Zhao B. Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation. Indoor Air. 2010;20:95–111.10.1111/ina.2010.20.issue-2
  • Zhang Z, Chen Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmos Environ. 2006;40:3396–408.10.1016/j.atmosenv.2006.01.014
  • Kang YM, Wang YJ, Zhong K. Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms. Particuology. 2011;9:619–25.10.1016/j.partic.2010.05.018
  • Ramechecandane S, Beghein C, Allard F. Modeling fine particle dispersion in an inhomogeneous electric field with a modified drift flux model. Build Environ. 2010;45:1536–49.10.1016/j.buildenv.2010.01.006
  • Beghein C, Jiang Y, Chen QY. Using large eddy simulation to study particle motions in a room. Indoor Air. 2005;15:281–290.10.1111/ina.2005.15.issue-4
  • Bouilly J, Limam K, Beghein C, Allard F. Effect of ventilation strategies on particle decay rates indoors: an experimental and modelling study. Atmos Environ. 2005;39:4885–92.10.1016/j.atmosenv.2005.04.033
  • Tian ZF, Tu JY, Yeoh GH, Yuen RKK. Numerical studies of indoor airflow and particle dispersion by large Eddy simulation. Build Environ. 2007;42:3483–92.10.1016/j.buildenv.2006.10.047
  • Richmond-Bryant J, Eisner AD, Brixey LA, Wiener RW. Transport of airborne particles within a room. Indoor Air. 2006;16:48–55.10.1111/ina.2006.16.issue-1
  • Zhang Z, Chen Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ. 2007;41:5236–48.10.1016/j.atmosenv.2006.05.086
  • Gao NP, Niu JL. Modeling particle dispersion and deposition in indoor environments. Atmos Environ. 2007;41:3862–76.10.1016/j.atmosenv.2007.01.016
  • Jin HH, Chen Y, Li QP, Fan JR, Luo K. Numerical prediction of indoor airborne particle concentration in a test chamber with drift-flux model. J Therm Sci. 2011;20:161–6.10.1007/s11630-011-0452-y
  • Lai ACK, Chen FZ. Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors. Atmos Environ. 2007;41:5249–56.10.1016/j.atmosenv.2006.05.088
  • Lai ACK, Wang K, Chen FZ. Experimental and numerical study on particle distribution in a two-zone chamber. Atmos Environ. 2008;42:1717–26.10.1016/j.atmosenv.2007.11.030
  • Parker S, Nally J, Foat T, Preston S. Refinement and testing of the drift-flux model for indoor aerosol dispersion and deposition modelling. J Aerosol Sci. 2010;41:921–34.10.1016/j.jaerosci.2010.07.002
  • Zhao B, Chen C, Tan Z. Modeling of ultrafine particle dispersion in indoor environments with an improved drift flux model. J Aerosol Sci. 2009;40:29–43.10.1016/j.jaerosci.2008.09.001
  • Lai ACK, Chen FZ. Modeling particle deposition and distribution in a chamber with a two-equation Reynolds-averaged Navier-Stokes model. J Aerosol Sci. 2006;37:1770–80.10.1016/j.jaerosci.2006.06.008
  • Lai ACK, Chen FZ. Modeling of cooking-emitted particle dispersion and deposition in a residential at: a real room application. Build Environ. 2007;42:3253–60.10.1016/j.buildenv.2006.08.015
  • Lin CH, Horstman RH, Ahlers MF, Sedgwick LM, Dunn KH, Topmiller JL. Numerical simulation of air flow and airborne pathogen transport in aircraft cabins Part I: numerical simulation of the flow field. ASHRAE Trans. 2005;111:755–63.
  • Lin CH, Horstman RH, Ahlers MF, Sedgwick LM, Dunn KH, Topmiller JL. Numerical simulation of air flow and airborne pathogen transport in aircraft cabins Part II: numerical simulation of airborne pathogen transport. ASHRAE Trans. 2005;111:754–68.
  • Pilou M, Mavrofrydi O, Housiadas C, Eleftheriadis K, Papazafiri P. Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis. Nanotoxicology. 2015;7(S):113–22.
  • Pilou M, Saraga D, Tsangaris S, Vasilakos C, Housiadas C. Particle deposition in the lung during domestic activities. In: International Aerosol Conference; Helsinki, Finland; 2010.
  • Pilou M, Saraga D, Neofytou P, Vasilakos C, Housiadas C. Internal dose estimation from particulate matter exposure in an office environment. In: Nanotoxicology, Edinburgh, UK; 2010.
  • Demou E, Tran L, Housiadas C. Effective biological dose from occupational exposure during nanoparticle synthesis. In: Inhaled Particles X Conference, Journal of Physics: Conference Series; Sheffield, UK; 2008. p. 151.
  • Demou E, Hellweg S, Tran L, Neofytou P, Mitrakos D, Housiadas C. From inhalation exposure to effective dose during nanoparticle synthesis. In: Nanotoxicology, Zurich, Switzerland; 2008.
  • Drossinos Y, Housiadas C. Aerosol flows. In: Crowe CT, editor. Multiphase flow handbook. Boca Raton (FL): CRC Press; 2006. p. 6-1–58.
  • Seipenbusch M, Binder A, Kasper G. Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg. 2008;52:707–16.
  • Available from: http://research.dnv.com/nanotransport/index.htm.
  • ICRP. Annals of the ICRP. Oxfordshire: Pergamon; 1994;24(1–3).
  • Mitsakou C, Helmis C, Housiadas C. Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. J Aerosol Sci. 2005;36:75–94.10.1016/j.jaerosci.2004.08.008
  • Mitsakou C, Housiadas C, Eleftheriadis K, Vratolis S, Helmis C, Asimakopoulos D. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period. Indoor Air. 2007;17:143–52.10.1111/ina.2007.17.issue-2
  • Mitsakou C, Mitrakos D, Neofytou P, Housiadas C. A simple mechanistic model of deposition of water-soluble aerosol particles in the mouth and throat. J Aerosol Med. 2007;20:519–29.10.1089/jam.2007.0625
  • Stockmann Juvala H, Riitta Hyytinen E, Taxell P, Lindberg H, Santonen T. Risk management in the construction industry derivation of occupational exposure limit values for nanomaterials. In: NANOTOX. Antalya, Turkey; 2014.
  • Schulte PA, Murashov V, Zumwalde R, Kuempel ED, Geraci CL. Occupational exposure limits for nanomaterials: state of the art. J Nanopart Res. 2010;12:1971–87.
  • NIOSH. Occupational exposure to titanium dioxide. Current Intelligence Bulletin 63. National Institute for Safety and Health, USA. 2011. Available from: http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.