479
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study

ORCID Icon, , , , & ORCID Icon

References

  • Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–93. doi: 10.1212/01.wnl.0000202600.72018.39
  • Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94:2297–308. doi: 10.1016/j.apmr.2013.06.023
  • Ada L, Dean CM, Vargas J, Ennis S. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. J Physiother. 2010;56:153–61. doi: 10.1016/S1836-9553(10)70020-5
  • Swinnen E, Duerinck S, Baeyens JP, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42:520–6. doi: 10.2340/16501977-0538
  • Forrest GF, Sisto SA, Barbeau H, Kirshblum SC, Wilen J, Bond Q, et al. Neuromotor and musculoskeletal responses to locomotor training for an individual with chronic motor complete AIS-B spinal cord injury. J Spinal Cord Med. 2008;31:509–21. doi: 10.1080/10790268.2008.11753646
  • Coupaud S, Jack LP, Hunt KJ, Allan DB. Muscle and bone adaptations after treadmill training in incomplete spinal cord injury: a case study using peripheral Quantitative Computed Tomography. J Musculoskeletal Neuronal Interact. 2009;9:288–97.
  • Turiel M, Sitia S, Cicala S, Magagnin V, Bo I, Porta A, et al. Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol. 2011;149:323–9. doi: 10.1016/j.ijcard.2010.02.010
  • Adams MM, Hicks AL. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury. J Spinal Cord Med. 2011;34:488–94. doi: 10.1179/2045772311Y.0000000028
  • Ginis KA M, Latimer AE. The effects of single bouts of body-weight supported treadmill training on the feeling states of people with spinal cord injury. Spinal Cord. 2007;45:112–5. doi: 10.1038/sj.sc.3101911
  • Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, et al. Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab. 2006;31:283–91. doi: 10.1139/h05-036
  • Huang Q, Yu L, Gu R, Zhou Y, Hu C. Effects of robot training on bowel function in patients with spinal cord injury. J Phys Ther Sci. 2015;27:1377–8. doi: 10.1589/jpts.27.1377
  • Ekso B. Ekso Bionics. 2017.
  • Parker HC. Indego – Powering People Forward | Parker Indego. 2017.
  • ReWalk Robotics I. ReWalk – More Than Walking. 2016.
  • Rex Bionics L. Rex Bionics – Step into the future. 2017.
  • What’s HAL®? The world’s first cyborg-type robot “HAL®” (Hybrid Assistive Limb). Cyberdyne Inc. 2018 [cited 2018 Nov 10]. Available from https://www.cyberdyne.jp/english/products/HAL/index.html.).
  • Food and Drug Administration HHS. Medical devices; physical medicine devices; classification of the powered lower extremity exoskeleton; republication. Final order; republication. Fed Regist. 2015;80:25226–30.
  • Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52:147–58. doi: 10.1682/JRRD.2014.02.0060
  • Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21:122–32. doi: 10.1310/sci2102-122
  • Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med. 2013;36:313–21. doi: 10.1179/2045772313Y.0000000126
  • Kolakowsky-Hayner SA, Crew J, Moran S, Shah A. Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013;S4:003. doi: 10.4172/2165-7939.S4-003
  • Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to Use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015;21:110–21. doi: 10.1310/sci2102-110
  • Sale P, Russo EF, Russo M, Masiero S, Piccione F, Calabrò, RS, et al. Effects on mobility training and de-adaptations in subjects with spinal cord injury due to a Wearable robot: a preliminary report. BMC Neurol. 2016;16:12-016-0536-0. doi: 10.1186/s12883-016-0536-0
  • Jansen O, Grasmuecke D, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, et al. Hybrid Assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept; the results in 21 patients. World Neurosurg. 2018;110:e73–e8. doi: 10.1016/j.wneu.2017.10.080
  • Platz T, Gillner A, Borgwaldt N, Kroll S, Roschka S. Device-Training for individuals with thoracic and lumbar spinal cord injury using a powered exoskeleton for technically assisted mobility: achievements and user satisfaction. Biomed Res Int. 2016;2016:8459018. doi: 10.1155/2016/8459018
  • Spungen AM, Asselin P, Fineberg DB, Kornfeld SD, Harel NY. Exoskeletal-assisted walking for persons with motor-complete paraplegia. Research and Technology Organization. Human Factors, and Medicine Panel: North Atlantic Treaty Organization. 2013.
  • Asselin PK, Avedissian M, Knezevic S, Kornfeld S, Spungen AM. Training persons with spinal cord injury to ambulate using a powered exoskeleton. J Visual Exp. 2016;112. doi:10.3791/54071.
  • Scivoletto G, Tamburella F, Laurenza L, Foti C, Ditunno JF, Molinari M. Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord. 2011;49:736–40. doi: 10.1038/sc.2010.180
  • Kozlowski AJ, Fabian M, Lad D, Delgado AD. Feasibility and safety of a powered exoskeleton for assisted walking for persons with Multiple Sclerosis: A single-group preliminary study. Arch Phys Med Rehabil. 2017;98:1300–7. doi: 10.1016/j.apmr.2017.02.010
  • Rehabilitation Institute of C. Rehabilitation measures database. 2010.
  • Chang SH, Afzal T, Berliner J, Francisco GE, Group TSCE. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot Feasibility Stud. 2018;4:62. doi: 10.1186/s40814-018-0247-y
  • Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23:314–22. doi: 10.1123/japa.2013-0236
  • Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81. doi: 10.1016/j.jbi.2008.08.010
  • Swank C, Sikka S, Driver S, Bennett M, Callender L. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation. Disabil Rehabil Assist Technol. 2019;17:1–9.
  • Baunsgaard CB, Nissen UV, Brust AK, Frotzler A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018;56:106–16. doi: 10.1038/s41393-017-0013-7
  • He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017;10:89–107.
  • Gorgey AS. Robotic exoskeletons: The current pros and cons. World J Orthop. 2018;9:112–9. doi: 10.5312/wjo.v9.i9.112
  • Hagen EM. Acute complications of spinal cord injuries. World J Orthoped. 2015;6:17–23. doi: 10.5312/wjo.v6.i1.17
  • Partida E, Mironets E, Hou S, Tom VJ. Cardiovascular dysfunction following spinal cord injury. Neural Regen Res. 2016;11:189–94. doi: 10.4103/1673-5374.177707
  • Witiw CD, Fehlings MG. Acute spinal cord injury. J Spinal Disord Techniques. 2015;28:202–10. doi: 10.1097/BSD.0000000000000287
  • Ueba T, Hamada O, Ogata T, Inoue T, Shiota E, Sankai Y. Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit. Neurol Med Chir (Tokyo). 2013;53:287–90. doi: 10.2176/nmc.53.287
  • Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. Robot-Assisted training for People with spinal cord injury: A Meta-analysis. Arch Phys Med Rehabil. 2017;98:2320-31.e12. doi: 10.1016/j.apmr.2017.05.015
  • National Spinal Cord Injury Statistical C. Spinal cord injury Facts and Figures at a Glance. J Spinal Cord Med. 2019;37:355–6.
  • Harvey LA. Physiotherapy rehabilitation for people with spinal cord injuries. J Physiother. 2016;62:4–11. doi: 10.1016/j.jphys.2015.11.004
  • Tsai C, Delgado A, Weinrauch W, Manente N, Levy I, Escalon M, et al. The effects of exoskeletal-assisted walking during acute inpatient rehabilitation for people with spinal cord injury: a Pilot Study. Waikiki, Hawaii: Poster presented at the American Spinal Injury Association (ASIA) 2019 Annual Scientific Meeting; 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.